A polynomial chaos method for arbitrary random inputs using B-splines
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Abstract

Isogeometric analysis which extends the finite element method through the usage of B-splines has become well established
in engineering analysis and design procedures. In this paper, this concept is considered in context with the methodology
of polynomial chaos as applied to computational stochastic mechanics. In this regard it is noted that many random
processes used in several applications can be approximated by the chaos representation by truncating the associated
series expansion. Ordinarily, the basis of these series are orthogonal Hermite polynomials which are replaced by B-spline
basis functions. Further, the convergence of the B-spline chaos is presented and substantiated by numerical results.
Furthermore, it is pointed out, that the B-spline expansion is a generalization of the Legendre multi-element generalized

polynomial chaos expansion, which is proven by solving several stochastic differential equations.
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1. Introduction

The usage of polynomial chaos (PC) representations to
approximate random processes is widespread in the area
of stochastic mechanics (e.g. [1, 2, 3, 4]), and has a mathe-
matically solid framework. For any arbitrary random pro-
cess with finite second-order moments the original Wiener
polynomial chaos expansion [5] converges in accord with
the Cameron-Martin theorem [6]. Further, the conver-
gence rate is optimal for Gaussian inputs; in fact the rate is
exponential [7]. This can be understood from the fact that
the weighting function of Hermite polynomials is the same
as the probability density function of the Gaussian ran-
dom variables. For other types of random input the con-
vergence rate may substantially slower. In this case, other
types of orthogonal polynomials, instead of Hermite poly-
nomials, could be used to construct the chaos expansion.
Xiu and Karniadakis [7] proposed the generalized polyno-
mial chaos (gPC) and proved optimal convergence for the
polynomials of the Askey-scheme, e.g. Legendre polynomi-
als correspond to the uniform distribution. Further, Wan
and Karniadakis [8] extended the gPC by decomposing the
stochastic space in elements and build a gPC within each
element, which is known as the multi-element generalized
polynomial chaos (ME-gPC). This extension captures the
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problems of long-term integration and stochastic disconti-
nuities, and was especially applied to flow problems [9, 10]
and others [11, 12, 13, 14]. More recently, improvements
of the method were proposed [15, 16], but handling long-
term integration and stochastic discontinuities remains a
challenging problem.

The original Wiener and the generalized PC have also been
successfully applied to arbitrary non-optimal inputs [17].
[3] However, in practical applications, one often does not
know the analytical form of the distribution of the input,
or, if known, it may not be one of the classical distribu-
tions, e.g. uniform, Gaussian, exponential, etc. In this
case, the optimal convergence may deteriorates [4, 18], es-
pecially for higher orders.

In 2005, Hughes et al. [19] bridged the gap between
computer aided design and engineering by introducing the
methodology of isogeometric analysis (IGA), which suc-
cessfully has enhanced many deterministic engineering ap-
plications [20, 21, 22, 23, 24]. In this regard, it is remark-
able that the notion of IGA was not widely adopted within
stochastic frameworks [25, 26, 27]. In the best of the au-
thors’ knowledge, there are two relevant approaches: Hien
and Noh [26] combined the IGA with stochastic perturba-
tion and Li et al. [27] numerically solved the Karhunen-
Love expansion using isogeometric basis functions. One
procedure within the IGA framework is to use non-uniform
rational B-Splines (NURBS), which are prevalent in engi-
neering design processes, as a basis for solution fields. It
turned out that B-splines are also beneficial in terms of
the analysis.

January 29, 2020



In this paper, the B-spline basis functions are employed
in the truncated PC expansion and weak convergence for
arbitrary input variables are shown. Further, strong con-
vergence is achieved for uniform distributed random in-
puts. These results are supported by numerical examples
where approximations of beta, normal, and exponential
distribution are extensively studied and compared with
Hermite and Legendre chaos. Afterwards, a first order or-
dinary differential equation (ODE) and a cantilever Euler-
Bernoulli beam with random flexural rigidity is solved by
B-spline expansions using a stochastic Galerkin scheme
and faced with Legendre chaos.

2. Wiener-Askey chaos

Let (92, F,P) be a probability space, where € is a sam-
ple space, F is an appropriate o-field on €2, P is a prob-
ability measure and (R, B) a measurable space, where B
is the Borel o-field. A (real-valued) random variable X
on (Q,F,P) is an mapping X : Q& — R which is (F, B)-
measurable. Denote by Lo (€, F, P) the Hilbert space of all
random variables with finite second moment, i.e. E[X?] <
oo with E[-] is the operator of mathematical expectation.
Consider the random variable X as a function of an arbi-
trary random variable Z, i.e.

X =g(2), (1)

where ¢ is a deterministic, measurable mapping. In gen-
eral, equation (1) describes the random output X of a
stochastic system in the presents of random inputs, pa-
rameterized by a set of independent variables Z.

Wiener [5] proposed the Hermite PC which allows to
represent equation (1) in terms of the series

X = a,H,(2), (2)
p=0

where Z is Gaussian, H,(Z) are Hermite polynomials in
Z of order p and a, are deterministic coefficients to be
determined. Truncating the series in equation (2) after
the P+ 1 term leads to the PC approximation of order P:

P
Xp=> a,H,(Z) (3)
p=0

which converges in Lo(Q, F,P) [1], i.e.

Xp 25X for P— oo (4)

Due to the orthogonality of the Hermite functions, the
coefficients in (3) can simply determined by the orthogonal
Lo projection

Elg(Z)H,(2)] = a, E[H,(Z)?] (5)

for every p, which make these polynomials very efficient
for computational issues. The orthogonality depends on

the measure P of Lo(Q2, F,P) and in the above case a
Gaussian measure is at the basis of Ly. The convergence
property guarantees the effectiveness of solving stochastic
differential equations with Gaussian inputs [1, 2].

It has been demonstrated by many authors that the
Hermite chaos is effective in solving stochastic differential
equations with Gaussian inputs as well as certain types
of non-Gaussian inputs [28, 1, 29, 4]. Nevertheless, the
optimal exponential convergence rate is not achieved for
general non-Gaussian random inputs or the convergence
severely deteriorates [7, 18]. Xiu and Karniadakis [7] pro-
posed the Wiener-Askey or generalized polynomial chaos
in 2002:

X =Y a,0,(2). (6)
p=0

It identifies a correspondence between the distribution of
the random input Z and the type of orthogonal polynomi-
als W form the Askey scheme of hypergeometric orthogonal
polynomials, which leads to optimal convergence rates, i.e.
exponentially. Some elected correspondences are shown in
table 1 - e.g. [28].

Distribution of Z ‘ Polynomial Basis ¥ ‘ Support

Gaussian Hermite (—00,0)
Gamma Laguerre [0,00)

Beta Jacobi [a,b] CR
Uniform Legendre [a,b] CR

Table 1: Correspondence between distribution and polynomial basis.

3. B-spline chaos

In this section, the PC approximation is adapted in or-
der to make the method accessible for B-spline basis func-
tions instead of orthogonal polynomials. B-spline basis
functions, which are piecewise Bernstein polynomials, are
characterized by an open non-uniform knot vector

== [O,...,O,up+2,...,uN,l,...,l]
—— —
p+1 p+1
= [u1, ..., UNypt1] (7)

where p is the polynomial order and N is the number of
basis functions - e.g. [19]. The u;’s are called knots and
define element boundaries if they differ. The B-spline ba-
sis functions can then be explained by the Cox-de Boor
recursion formula:

1 if U < u < Uipl
Bi = 8
2(®) {0 otherwise (®)
for p =0, and
U — uU;
B;p(u) ;=——B; ,—1(u
,p( ) Uiyp — Ui P 1(u)
Uj —U
+ R Bii1,o1(u) (9)

Witp+1 — Uit
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00 0.25 0.5 0.75 1

Figure 1: B-spline basis of order p = 4 with knot vector = =
[0,0,0,0,1/4,1/4,1/4,1/2 1/2 1/2 3/4 3/4 3/4 1,1,1,1] leading to four
CO-elements with N = 17 basis functions.

element 1 ‘ | ’ element 2 ‘ | ’ element 3 ‘ | ’ element 4

00 0.25 0.5 0.75 1

Figure 2: B-spline basis of order p = 4 with knot vector = =
[0,0,0,0,1/4,1/2,3/4,,1,1,1, 1] leading to four C3-elements with N =
8 basis functions.

for p > 1. Repeating inner knots in the interior of the knot
vector entail in a lower continuity over element boundaries.
Single knots reveal a CP~!-continuity. This can be seen in
Fig. 1 and Fig. 2, respectively. A prescribed continuity af-
fects profoundly the number of basis functions, too. This
indeed is the main reason for the effectiveness of the sub-
sequent method.

Denote by B; p,(u) the i-th B-spline basis function of
order p defined on [0,1] with ¢ = 1,..., N. According to
the original Wiener polynomial chaos, the B-spline chaos
of order p and knot vector = is defined by

N

B-splines can not be used for the approximation of random
variables in the same manner then orthogonal polynomials,
like Hermite polynomials, because of the lack of orthogo-
nality. Nevertheless, it suffices that the functions in use
form a basis of the underlying Hilbert space Lo(Q2, F,P)
[1, 28]. Thus, the coeflicients in (10) can be determined
by solving a linear algebraic system resulting from the Lo
projection:

Ax=Db (11)
with

Aij:=E[B;,(u(2))Bjp(u(2))] (12)
b; :==E [9(2)Bj,(u(2))] (13)

i,j =1,...,N. Next, the integrals in equation (11) must
be calculated. Specifically, this necessitates the introduc-
tion of a new space for the parameter u of the B-spline
basis functions B; ,(u(Z)), which explicitly depend on the
random variable Z. The question next arises as to how

an arbitrary random variable Z can be uniquely mapped
on the parameter space [0,1] in a proper way. A conve-
nient choice is the inverse cumulative distribution function
(CDF) of a random variable Z, given by

Fy Y u) :=inf{z : Fz(z) >u} €0,1], (14)

where Fz is the CDF of Z. Clearly, the inverse always
exists and is unique. This allows one to connect the pa-
rameter u and the random variable Z such that u become
a uniformly distributed random variable U = Fz(Z) on
the interval [0,1], i.e.
Fy(u) = P(U <u)=P(Fz(Z) <u)
=P(Z < Fy'(w) = Fz(Fz " (u)) = u

= U~U([0,1]). (15)
If the distribution of Z is explicitly known, equation (11)
can be expressed in terms of U by

du  dFz(z)
G _pe, e

where f is the probability density function of Z. Hence, a
proper mapping between 2 and [0, 1] by Fy is established.
So, the expressions in (12) and (13) can be expressed as

Ez [Bip(Fz(2)) B}, (Fz(2))]

_ /Q By p(Fs(2)) By p(Fz(2)) f2(2) dz

u=Fy(z)

- /[ | Biala) B0 d
=Ey [B;,(U)B;,(U)], (17)

and
Ez [9(Z)B},(Fz(2))]

_ /Q 9(2)Bjp(F2(2)) f2(2) d=

- / 9(F5 () B; p(u) du
[0,1]

=Ey [9(Fz (U)B;,(U)]. (18)

Thus, the matrix A depends only on the configuration of
the B-spline basis functions, and can be stored before the
analysis. Further, A is a band matrix, if the knot vector
= has inner knots, i.e.

Ai,j =0 for |Z—]| >p+ 1. (19)

Examining the integrals in (17) and (18) it turns out that
only the inverse cumulative distribution function of the
describing random variable Z and the mapping g must be
known. Thus, this procedure is not strongly limited and
simultaneously paves the way for using this method with
discrete random variables. Besides, under the assumption
that Z is a uniformly distributed random variable Fy is
the identity, and optimal convergence is expected in corre-
spondence with the uniform distribution, which is shown
in the ensuing section.



3.1. Convergence

The proposed method is closely related to the gPC [7]
where the same mapping property between a uniform and
arbitrary distribution is utilized. It can be shown, see e.g.
[28], that the gPC approximation converges weakly, if the
random variable to be approximated is square integrable
and the moments in the chaos expansion exists. This can
be adopted here and Xy converges in probability and in
distribution, i.e.

Xy 25 X and Xy = X for N — oo. (20)
To be precise, this can be stated as follows:

Definition 1 (Weak chaos approximation). Let X be a
random variable with CDF Fx(x) = P(X < x) and let Z
be an arbitrary random variable in a set of basis functions
v, (Z),i=1,...,N. If

N
Xy =) a¥;(Z) witha; €R (21)
=1

converges to X in a weak sense, i.e.
Xy B X or Xy 2 X for N — oo, (22)

then Xx is a weak chaos approzimation of X.

Theorem 1. Let X be a random variable with CDF Fx (z)
= P(X < z) and finite second moment. Let U be a uni-
formly distributed random variable in [0,1] such that the
moments Ey (B, ,(U)Bj,(U)) exists for all B-spline basis
functions of order p € N with i,j5 € {1,...,N}. Let

N
Xn =) iBip(U) (23)
i=1
the weak B-spline chaos approximation of X, where x =
(1, ...,2N) results from the Lo projection Ax = b with
A;;:=Ey(B;p(U)B;(U)) and (24)
b; = Ey(Fx ' (U)B;,(U)). (25)
Then Xy converges to X in probability, i.e.
Xy 25X for N— . (26)
Proof. Let
X = Fx'(U) = F¢' (Fu(U)), (27)

which implies that X has the same probability distribution
as X, i.e. Fg = Fx. Thus, it holds X 2 X and E(X?) <
00, which leads to

m>Emﬂ:/

Qx

z? dFx(x)

:/[0 1) (F§1(FU(“)))2 dFy (u). (28)

= X € Ly([0,1],0([0,1]),dFy)
={f:00,1] >R | Ey [f?] <oo}. (29)

Since (23) is the Lg projection of X by Xn, Xy converges
in mean square to X, which implies

Xy 25X for N— oo (30)

This completes the proof, because X Zx. O

Note, convergence in probability implies convergence in

distribution. So, it also holds Xy Py X for N — co. Fur-
ther, if g(Z) in equation (1) is explicitly known in terms of
Z, Ly convergence can be achieved [28]. However, in most
practical numerical analyses only the probability density
function of g(Z) or even less information is available. But
in this case, strong convergence can not established be-
cause of the lack of information concerning g and Z. Nev-
ertheless, the above theorem ensures weak convergence.

4. Numerical examples

In this section the versatility of the aforementioned ap-
proach is demonstrated, and the convergence results are
further substantiated by numerical examples. First, sev-
eral random variables are approximated by different ex-
pansions and are juxtaposed with each other. Finally,
a first order stochastic differential equation and a can-
tilever beam are solved using a stochastic Galerkin scheme
and compared to the Legendre multi-element chaos. Be-
sides, h-p convergence is shown and it turns out, that the
B-spline chaos is a generalization of the Legendre multi-
element polynomial chaos, which can extensively improved
by increasing the continuity over stochastic element bound-
aries.

4.1. Approximation of random variables

In the following uniform, beta, normal, and exponen-
tial distributed random variables are approximated by Her-
mite, Legendre and B-spline chaos. The resulting den-
sity functions are estimated by a normal kernel smooth-
ing function available in all common statistical toolboxes®.
The advantage of the proposed technique lies in the flexi-
bility of adapting the order, number of elements and con-
tinuity over element boundaries, which can be quite pow-
erful if the underlying distribution is unknown.

4.1.1. Uniform distribution

Fig. 3 shows approximations of a uniform density func-
tion by Hermite, Legendre, and B-spline chaos for differ-
ent orders p. Legendre and B-spline expansions remain
stable and unchanged from the first order on. Neither or-
der elevation nor knot insertion changes the accuracy. The

IFor the presented examples the ksdensity MATLAB-function
with bandwidth 0.06 and 1.000.000 samples were used.
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Figure 3: Approximations of a uniform distribution by Hermite poly-
nomials (Hp), Legendre polynomials (Lj), and B-splines (Bp).

changing values of the expansion coefficients are the main
difference. While only the first two basis functions influ-
ence the representation for the Legendre chaos, because all
coefficients are zero for ¢ > 2, the coefficients are chang-
ing for every configuration for the B-splines - see Fig. 4.
However, in this case only a straight line has to be approx-
imated. Therefore, linear B-splines are sufficient. This
leads to the conclusion that a correspondence between the
uniform distribution and B-splines can be identified. How-
ever, for the Hermite chaos more terms are necessary to
reach the same accuracy, and oscillations are observed at
the corners. This is also known as the stochastic Gibbs
phenomenon [28].

4.1.2. Beta distribution
Let X be a beta distributed random variable on [0, 1]
with density function

1
B(a, §)

where B(a, 8) is the beta function. Results of for a beta
distributed random variable X with « = 3 and g =1 are
shown in Fig. 5. Legendre and Bernstein (C° B-spline)

fx(z) = 2711 —2)P~1 with a, 8 >0, (31)

1 7{ T T T T T T T T T /ii *H
0.8 - A 1|4 B

coefficient value

| | | | | |
6 7 &8 9 10 11
index

I N B S
1 2 3 4 5

Figure 4: Coeflicient values of Hermite, Legendre, and B-spline chaos
for approximating a uniformly distributed random variable.

1.2

Figure 5: Approximations of a beta distribution with & = 3 and
B = 1 by Legendre polynomials (L) and C° B-splines (°By).

approximations are compared, for which an explicit one-
to-one transformation exists [30]. A further indication for
the connection of Legendre and Bernstein polynomials is
the indistinguishableness of the illustrated results. How-
ever, the approximations could be substantially improved
by adding inner knots. Then, the Bernstein polynomials
become B-splines basis functions.

4.1.8. Normal distribution
Let X ~N (u,0?) be a normal distributed random vari-
able with density function

with expectation € R and variance 02 > 0. Hermite
polynomials correspond to the Gaussian measure. Thus,
the Hermite chaos is exact from the first order on - see
Fig. 6. Further, a Gaussian kernel is used here. Thus,
the approximation fits perfectly. In contrast, a Gaussian
input is not optimal for the B-spline or Legendre chaos,
which can clearly be recognized. Nevertheless, inserting
nine inner knots, which leads to ten stochastic elements,
improves the performance distinctly, although moderate
oscillations remain at the tails. The fluctuations can be
attributed to the different supports. The Lo projection
must determine a proper mapping from [0, 1] to (—o0, 00).

fx(x) =

4.1.4. Exponential distribution
Assume that X is a exponential distributed random
variable on [0, co] with density function

fx(x) = Aexp(=A)

and consider the specific case of A = 1. The Hermite
chaos behaves quite well for higher orders and is smooth,
although the peak decreases for P = 10 - see Fig. 7. As
seen before, nine inner knots are utilized in order to di-
minish the oscillations for the B-splines, but the deviation
remains fairly large on the right end. Now, another use-
ful property of B-spline basis functions can be exploited

with A > 0 (33)



Figure 6: Approximations of a normal distribution with ¢ = 3 and
o = 2 by Hermite polynomials (Hp) and B-splines with ten stochastic
elements (B0).

to solve this issue. Inserting the same knot again reduces
the continuity over element boundaries by one. This can
be repeated until the B-splines become decomposed, i.e.
C°-continuity over element boundaries. In Fig. 7, B9
specifies the case for ten C’-elements of order ten, which
leads to a much smoother approximation and can compete
against the Hermite chaos. Solely, the tail is slightly fluc-
tuating which may be caused by the support mismatch.
Further, the employed normal kernel smoothing function
is non-optimal for the B-splines representation.

4.2. First order stochastic ordinary differential equation

In the following consider the stochastic ODE from Wan
and Karniadakis [8]

WOy

1 with  y(0) =1, (34)

where ¢t € Ry and the decay rate a : 2 — R is a random
variable with mean p, and density function f,. The exact

solution of (34) is

y(t) = exp(—a(w)?). (35)

—H
--- Hy

Figure 7: Approximations of a exponential distribution with A =1
by Hermite polynomials (Hp), B-splines with ten elements (B3°),

and C° B-splines with ten elements (OB},O)

Then, the stochastic mean solution can be determined by

B [u(t)] = [ exp(-at)fu(a) da (36)

with support S of a.
Applying the B-spline chaos to the random variables a and
y yields

N

a" =>"a;Bi,(U) (37)
=1

and

N
70 = 3 w®BLU) (38)

where U ~U([0,1]) corresponds to the B-spline basis. Sub-
stituting equation (37) in (34) leads to

N

05,0

N N
= _Zzalyj(t)Bl,p(U)Bj,p(U) (39)

i=1 j=1

Applying the Galerkin projection to equation (39) yields

N
SO g [, (1) By ()]

i=1

N N
=33 iy (t) E [Bip(U) Bjp(U) Bup(U)] (40)

i=1 j=1

k=1,...,N. The system of equations (40) can be solved
by any ODE solver. Here, the standard fourth order Run-
ge-Kutta scheme is used. For the mean and variance the
errors are defined by

_|E[GV ()] - E [y(t)]
Emeam(t) = E [y(t) | (41)
and
_ | Var [N ()] — Var [y(t)]
Evar(t) = ’ Var [0 : (42)

where Var [y(t)] = E [y(t) -E [y(t)]z}

In the sequel, the random decay rate is expected to be
uniformly distributed, i.e. a(w) ~ U([-1,1]). Thus, the
exact stochastic mean solution is

B [y(n) = 20,

(43)

Numerical results of equation (40) are shown in Fig. 8.
Hermite, Legendre and B-spline representations are op-
posed against each other. Specifically, the relative mean
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Figure 8: Relative mean and variance error of Hermite, Legendre,
and B-spline chaos for t = 5.

and variance error of the multi-element generalized poly-
nomial chaos from [8] are reproduced by using Bernstein
polynomials, which are equivalent to C° B-spline basis
functions - see Fig. 1 for instance. Exponential p-type
convergence for different stochastic meshes, i.e. number of
elements in the spectral expansion, are achieved. The Leg-
endre chaos is optimal for the uniform input. Therefore,
it generally outperforms the Hermite chaos here, which
error is fluctuating and decreases slowly. Furthermore,
the Legendre multi-element approach coincides with the
C® B-spline chaos. Increasing the number of elements vali-
dates the results of Wan and Karniadakis [8, Fig. 2]. This
means, through the natural structure of B-splines, that
the performance of Legendre multi-element chaos is inher-
ited by simply using C° B-splines basis functions in the
polynomial chaos expansion. Note in addition, it is much
easier to implement the B-spline basis in an ordinary PC
framework then it is the case with me-gPC.

Further, the capability of C® with CP~! B-spline chaos are
compared. The convergence for the error of mean and vari-
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Figure 9: Relative mean and variance error of C° and CP~1 B-spline
chaos for t = 5.

ance of the solution with respect to the number of basis
functions is illustrated in Fig. 9. The solid lines represent
the same results as in Fig. 8, whereas the dashed lines show
the errors of the C? B-spline chaos. Exponential h-type
convergence for both B-spline variants are on hand. More-
over, it can clearly be seen that for C3-continuity much less
basis functions are needed to reach nearly the same accu-
racy. This crucial point is emphasized distinctly by the
marked data sets. The marked data point of B* belongs
to the basis functions shown in Fig. 2 with N = 8 and
is competitive against the marked data point of B3 with
N = 13 for both error types. The number of basis func-
tions N is directly related to the degrees of freedom of the
numerical model. Thus, using smooth B-splines over ele-
ment boundaries instead of Legendre polynomials in each
element leads to a drastic reduction of the degrees of free-
dom and gain of efficiency. As mentioned above, this im-
provement is predicated on the smoothness over element
boundaries. Note that, the exhibit advantages becomes
even more pronounced if more elements or higher degrees
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Figure 10: Cantilever Euler-Bernoulli beam with deterministic uni-
formly distributed load f and random beam rigidity EI(0).

are treated.

4.3. Euler-Bernoulli beam with random stiffness

Next, consider the Euler-Bernoulli beam of length L =
1, clamped at z = 0, and subjected to a deterministic uni-
formly distributed load f shown in Fig. 10. The governing
equation is given by
d4

EI —u(x)

I = f with u(0)

=4/(0) =0, (44)
where the beam rigidity W = EI is assumed to be a ran-
dom variable W :  — R with density function fy,, and
is specified by the modulus of elasticity E and the area

moment of inertia I. The exact solution of (44) reads
2?(6L? — 4Lx + 2?)
0) = 45
u(w.6) = f O (45)

In order to make equation (44) numerically feasible the
spatial and stochastic space of the solution and the random
input must be discretized. Using isogeometric subspace
leads to

Zw INE,, (=)
=SS Nz, (UO)NE, (ule)). (46)
=1 i=1
and
W (0) = i wp N, (U(0)), (47)
k=1

where u(z) is a linear mapping from the spatial space
[0, L] and the parameter space [0,1], and U : Q@ — [0,1] a
uniformly distributed random variable, i.e. U ~U(]0, 1]).
Note, for the deterministic part classical Hermite basis
functions can be used in the same way.

Applying the deterministic Galerkin procedure to equation
(44) yields

nd d2 4 d2
Zul(e)/ @Nz,pd(ﬂﬁ) W () dz2
1=

/f mpa(@) dr m=1,... n4
s KYO)ut9) =~ (48)

N,‘fhpd (x) dx

Next, using equations (46) and (47), and applying the
stochastic Galerkin procedure gives

Nd MNs Nuw

S S v By [ 50 (UN, (UNE, (0)]

=1 i=1 k=1
P 4
/de d 5 Ny () d
s d
=Ey N /me pa (49)
forj=1,...,nsand m =1,...,ng which can be reformu-
lated in a matrix scheme of dimension ngns X ngns:
Ku=f (50)
with
Kijim = Zwk Ey { (U)N, (U)NE, (U)
=:K7,
/L@Nl’pd(fl;) ﬁNm,Pd(l‘) dx
::Kls’"l
,j=1,...,ng
= KK I,m=1,...,nq (51)
and
fjm =E ;Ps / f d;Pd
:f§fd ]:17.-.,715 (52)
Jam m=1,...,nq

Due to the boundary conditions of equation (44), the first
two coefficients of the vector u;(0), i.e. ui(0) and us(6),
are equal to zero, because u(0) represents the deflection
and usz(0) —uy () the slope at the clamped end. Thus, for
equation (50) it holds

U1 = U2 = O (53)

fori =1,...,ns ,which leads to a reduced system of equa-
tion (50) with dimension ng(ns — 2) X ng(ns —2). Solving
the reduced system, ngq(ns — 2) coefficients of u(x,0) are
determined, where as the control variables w;,, represents
the stochastic beam tip deflection

0) = in,Ng, (U(0)). (54)
i=1
Further, the relative mean error at the free end can then

be computed by

E i) — E [u(L,0)]
E [u(L,@)]

(55)

€mean =
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Figure 11: Relative mean and variance error at the beam tip solved
by Legendre and B-spline chaos with uniformly distributed beam
rigidity.

= Zun / N7, (u) dFy (u) (56)
[0,1]
and, considering (45) with = L,

f LA f LA 1

E [u(L,G)] =E [8 W(G)] =73 /SW ” dFw (w). (57)
Analogously, the relative variance and kurtosis error are
evaluated in common fashion.

For the numerical implementation of the preceding anal-
ysis fourth order B-splines with four elements defined by
the knot vector 22 =[000000.250.50.7511111]
were used, i.e. pg = 4, nelyg = 4 and kg = pg — 1, resulting
in eight (ng = mg — pg — 1 = 8) degrees of freedom; my
denotes the number of knots in Z¢ - compare Fig. 2.
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Figure 12: Relative mean and kurtosis error at the beam tip solved by
Legendre and B-spline chaos with normally distributed beam rigidity.

4.3.1. Uniformly distributed beam rigidity

Let W ~U([0.5,1.5]) and f = 1. Since the B-spline
chaos is optimal for a uniform distribution, the approxi-
mation (47) is exact for n, > 1, e.g.

W) =W(0) =Y wN2, (U(9)) (58)
k=1

with wy; = 0.5, wg = 1.5 and knot vector =¥ =[001 1].
Further, the exact mean solution is given by

11
f/ S— dw
8 0.5 w

1
g(log(lﬁ) —log(0.5))
~ 0.137326536083514.

E [u(L,0)]

(59)

Exponential h-p convergence for the first two central mo-
ments of the beam tip deflection are shown in Fig. 11. The
results are found in good agreement with the previous ex-
ample from section 4.2. The relative mean and variance
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Figure 13: Probability density function approximations of the can-
tilever beam tip deflection with uniformly distributed beam rigidity.

error are plotted for a different number of stochastic ele-
ments as well as the classical Legendre chaos, which per-
forms the worst. The mean error of the four element B-
spline chaos (B*) reach the deterministic approximation
error of about 107'3 for p, < 7. When ten stochastic
elements are considered even only fourth order B-splines
are required. In general, the relative mean errors converge
faster than the errors of higher moments.

4.3.2. Normal distributed beam rigidity

In this section the distribution of the random input
W is assumed to be normal, i.e. W ~ A (1,0.1), and f =
1. As can be seen in section 4.1.3, the B-spline chaos is
not optimal for a normal distribution. Thus, the solution
quality of @(x, #) also depends on the approximation W (6).
Therefore, p,, = 10, nel,, = 10 and k,, = 0 are chosen in
order to reach high accuracy. Further, the exact mean
solution of (44) is

(w—1)2
0.12

1 [ 1

E [u(L,0)] = 3 /_OO 0T o exp( ) dw
~ 0.126289521160065, (60)
which was solved numerically.

Fig. 12 shows the h-p convergence in the stochastic space
of the first and fourth central moment at the beam tip.
The beam rigidity W (0) is represented by the non-optimal
B-spline chaos which is an indication for the lower conver-
gence rate in comparison with the optimal representation
in section 4.3.1. However, the B-spline chaos still domi-
nates the Legendre chaos. Further, it is remarkable that
even for higher orders the high moments do not deteri-
orates which is a general problem for the Hermite chaos

18].

4.8.8. Monte Carlo simulation

In order to assess the significance of the numerical re-
sults obtained from the B-spline chaos the beam problem
is threated by a Monte Carlo simulation. Realizations of
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Figure 14: Probability density function approximations of the can-
tilever beam tip deflection with normally distributed beam rigidity.

the beam rigidity W (6) are computed and for each real-
ization the associated deterministic problem (48) is solved.
The resulting density function of the beam tip deflection
for W ~ N (1,0.1) and W ~ U(]0.5,1.5]) are plotted in
Fig. 13 and Fig. 14, respectively. Comparisons with dif-
ferent B-spline types show a satisfactory level of accuracy
for ps > 1 in both cases. Nevertheless, for the uniform
input better results are achieved which coincides with the
error plots from section 4.1 and 4.2. The probability den-
sity functions in Fig. 13 and Fig. 14 are estimated by a
normal kernel smoothing function with bandwidth 0.005
and 10000 samples.

5. Concluding remarks

In this paper the potential of B-spline chaos has been
demonstrated. Weak convergence for arbitrary random
variables has been shown and substantiated by several nu-
merical examples. Correspondingly, the B-spline approach
has been found optimal for uniform input and general-
izes the Legendre multi-element chaos of Wan and Karni-
adakis [8]. Further, it has been found that the smoothness
property of B-spline basis functions improves significantly
the efficiency when decomposing the random space, which
comes to a greater extent if the dimensionality is increased.
As a first example, to show the versatility and flexibility
of the B-spline chaos uniform, beta, normal, and exponen-
tial distributed random variables have been approximated.
Varying the polynomial degree, number of elements and
also the continuity over element boundaries are power-
ful tools to treat arbitrary non-uniform random inputs.
Afterwards, a first order stochastic ordinary differential
equation has been investigated within a Galerkin frame-
work to address long-time integration problems. Expo-
nential h-p convergence has been achieved for uniform in-
put. Note that Wan and Karniadakis [8] have stated that
the efficiency of ME-gPC is reduced significantly by the
rapidly increasing number of random elements for high-
dimensional problems; the results reported herein indicate



that the B-spline chaos can overcome this drawback. Fur-
ther, a one dimensional static beam problem under uni-
formly and normal distributed random flexural rigidity has
been considered using Galerkin projections. h-p conver-
gence has been demonstrated even for higher moments.
The accuracy of the B-spline technique is also established
by pertinent Monte Carlo simulations.

References

(1]

2]
(3]

(8]

(10]

[11]

[15]

[16]

(17)

R. Ghanem, P. Spanos, Stochastic Finite Elements: A Spec-
tral Approach, Dover Publications, INC., Mineola, New York,
revised edn., 2003.

M. Grigoriu, Stochastic Calculus: Applications in Science and
Engineering, Birkhauser, ISBN 0-8176-4242-0, 2003.

R. Ghanem, P. Spanos, A stochastic Galerkin expansion for
nonlinear random vibration analysis, Probabilistic Engineer-
ing Mechanics 8 (3-4) (1993) 255-264, ISSN 0266-8920, doi:
10.1016,/0266-8920(93)90019-R.

G. Stefanou, The stochastic finite element method: Past,
present and future, doi:10.1016/j.cma.2008.11.007, 2009.

N. Wiener, The homogeneous chaos., Amer. J. Math 60897 (4)
(1938) 936, ISSN 00029327, doi:10.2307/2371268.

R. H. Cameron, W. T. Martin, The Orthogonal Development
of Non-Linear Functionals in Series of Fourier-Hermite Func-
tionals, The Annals of Mathematics 48 (2) (1947) 385, ISSN
0003486X, doi:10.2307/1969178.

D. Xiu, G. E. Karniadakis, The Wiener—Askey Polynomial
Chaos for Stochastic Differential Equations, SIAM Journal on
Scientific Computing 24 (2) (2002) 619-644, ISSN 1064-8275,
doi:10.1137/51064827501387826.

X. Wan, G. E. Karniadakis, An adaptive multi-element gener-
alized polynomial chaos method for stochastic differential equa-
tions, Journal of Computational Physics 209 (2) (2005) 617-642,
ISSN 0021-9991, doi:10.1016/J.JCP.2005.03.023.

X. Wan, G. E. Karniadakis, Multi-Element Generalized Polyno-
mial Chaos for Arbitrary Probability Measures, STAM Journal
on Scientific Computing 28 (3) (2006) 901-928, ISSN 1064-8275,
doi:10.1137/050627630.

X. Wan, G. E. Karniadakis, Long-term behavior of polynomial
chaos in stochastic flow simulations, Computer Methods in Ap-
plied Mechanics and Engineering 195 (41-43) (2006) 5582-5596,
ISSN 0045-7825, doi:10.1016/J.CMA.2005.10.016.

X. Wan, G. E. Karniadakis, Solving elliptic problems
with non-Gaussian spatially-dependent random coefficients,
Computer Methods in Applied Mechanics and Engineer-
ing 198 (21-26) (2009) 1985-1995, ISSN 00457825, doi:
10.1016/j.cma.2008.12.039.

G. Kewlani, J. Crawford, K. Iagnemma, A polynomial chaos
approach to the analysis of vehicle dynamics under uncertainty,
Vehicle System Dynamics 50 (5) (2012) 749-774, ISSN 0042-
3114, doi:10.1080/00423114.2011.639897.

J. Le Meitour, D. Lucor, J. C. Chassaing, Prediction of stochas-
tic limit cycle oscillations using an adaptive polynomial chaos
method, J. Aero. Struct. Dyn. 2 (1).

E. Sarrouy, O. Dessombz, J.-J. Sinou, Piecewise polynomial
chaos expansion with an application to brake squeal of a linear
brake system, Journal of Sound and Vibration 332 (3) (2013)
577-594, ISSN 0022460X, doi:10.1016/j.jsv.2012.09.009.

M. Gerritsma, J. B. van der Steen, P. Vos, G. Karniadakis,
Time-dependent generalized polynomial chaos, Journal of Com-
putational Physics 229 (22) (2010) 8333-8363, ISSN 00219991,
doi:10.1016/j.jcp.2010.07.020.

B. Chouvion, E. Sarrouy, Development of error criteria for
adaptive multi-element polynomial chaos approaches, Mechan-
ical Systems and Signal Processing 66-67 (2016) 201-222, ISSN
10961216, doi:10.1016/j.ymssp.2015.05.007.

R. Ghanem, Stochastic Finite Elements with Multiple
Random Non-Gaussian Properties, Journal of Engineering

11

21]

22]

Mechanics 125 (1) (1999) 26-40, ISSN 0733-9399, doi:
10.1061/(ASCE)0733-9399(1999)125:1(26).

R. V. Field, M. Grigoriu, On the accuracy of the polynomial
chaos approximation, in: Probabilistic Engineering Mechanics,
vol. 19, Elsevier, ISBN 0266-8920, ISSN 02668920, 65-80, doi:
10.1016/j.probengmech.2003.11.017, 2004.

T. J. Hughes, J. A. Cottrell, Y. Bazilevs, Isogeometric analy-
sis: CAD, finite elements, NURBS, exact geometry and mesh
refinement, doi:10.1016/j.cma.2004.10.008, 2005.

G. Sangalli, T. Hughes, L. Beirdo da Veiga, F. Auricchio, A. Re-
ali, Isogeometric Collocation Methods, Mathematical Models
and Methods in Applied Sciences 20 (11) (2010) 2075-2107,
ISSN 0218-2025, doi:10.1142/s0218202510004878.

J. Cottrell, A. Reali, Y. Bazilevs, Isogeometric analysis of struc-
tural vibrations, Computer Methods in Applied Mechanics and
Engineering 195 (41-43) (2006) 5257-5296, ISSN 0045-7825, doi:
10.1016/J.CMA.2005.09.027.

Y. Bazilevs, V. M. Calo, T. J. R. Hughes, Y. Zhang, Isogeomet-
ric fluid-structure interaction: Theory, algorithms, and com-
putations, Computational Mechanics 43 (1) (2008) 3-37, ISSN
01787675, doi:10.1007/s00466-008-0315-x.

J. Cottrell, J. Evans, S. Lipton, M. Scott, T. Sederberg, Isogeo-
metric analysis using T-splines, Computer Methods in Applied
Mechanics and Engineering 199 (5-8) (2010) 229-263, ISSN
0045-7825, doi:10.1016/J.CMA.2009.02.036.

F. Auricchio, L. Beirdao da Veiga, T. Hughes, A. Reali, Isogeo-
metric collocation for elastostatics and explicit dynamics, Com-
puter Methods in Applied Mechanics and Engineering 249-252
(2012) 2-14, ISSN 0045-7825, doi:10.1016/J.CMA.2012.03.026.
G. Bhardwaj, I. Singh, B. Mishra, Stochastic fatigue crack
growth simulation of interfacial crack in bi-layered FGMs using
XIGA, Computer Methods in Applied Mechanics and Engineer-
ing 284 (2015) 186-229.

T. D. Hien, H. C. Noh, Stochastic isogeometric analysis of
free vibration of functionally graded plates considering ma-
terial randomness, Computer Methods in Applied Mechan-
ics and Engineering 318 (2017) 845-863, ISSN 00457825, doi:
10.1016/j.cma.2017.02.007.

K. Li, W. Gao, D. Wu, C. Song, T. Chen, Spectral stochastic
isogeometric analysis of linear elasticity, Computer Methods in
Applied Mechanics and Engineering 332 (2018) 157-190, ISSN
00457825, doi:10.1016/j.cma.2017.12.012.

D. Xiu, Numerical Methods for Stochastic Computations: A
Spectral Method Approach, Princeton University Press, ISBN
9780691142128, 2010.

R. Ghanem, P. D. Spanos, Polynomial Chaos in Stochastic Fi-
nite Elements, Journal of Applied Mechanics 57 (1) (1990) 197—
202, ISSN 0021-8936, do0i:10.1115/1.2888303.

R. T. Farouki, LegendreBernstein basis transformations, Jour-
nal of Computational and Applied Mathematics 119 (2000) 145—
160, ISSN 03770427, doi:10.1016/S0377-0427(00)00376-9.



