1,280 research outputs found
Recommended from our members
A handheld diagnostic system for 6LoWPAN networks
The successful deployment of low-power wireless sensor networks (WSNs) in real application environments is a much broader exercise than just the simple instrumentation of the intended monitoring site. Many problems, from node malfunctions to connectivity issues, may arise during commissioning of these networks. These need to be corrected on the spot, often within limited time, to avoid undesired delays in commissioning and yet a fully functional system does not guarantee that no new problems will occur after leaving the site. In this paper we present the first ever (to our knowledge) implementation of a handheld diagnostic system for fast on-site commissioning of low-power IPv6 (6LoWPAN) WSNs as well as troubleshooting of network problems during and after deployment. This system can be used where traditional solutions are insufficient to ascertain the root causes of any problems encountered at no additional complexity in the implementation of the WSN. The embedded diagnosis capability in our system is based on a lightweight decision tree that distills the functioning of communication protocols in use by the network, with a major focus on interoperable IPv6 standards and protocols for low-power WSNs. To show the applicability of our system, we present a set of experiments based on results from a real deployment in a large construction site. Through these experiments, important performance insights are gained that can be used as guidelines for improvement of operation and maintenance of 6LoWPAN networks.This research has been funded by the EPSRC Innovation and Knowledge Centre for Smart Infrastructure and Construction project (EP/K000314/1). The authors wish to thank Costain-Skanska Joint Venture (CSJV) and our industrial partner Crossrail for allowing access and instrumentation of the Paddington site referenced in this paper
Monitoring a large construction site using wireless sensor networks
Despite the significant advances made by wireless sensor network research, deployments of such networks in real application environments are fraught with significant difficulties and challenges that include robust topology design, network diagnostics and maintenance. Based on our experience of a six-month-long wireless sensor network deployment in a large construction site, we highlight these challenges and argue the need for new tools and enhancements to current protocols to address these challenges.This research has been funded by the EPSRC Innovation and Knowledge Centre for Smart Infrastructure and Construction project (EP/K000314/1). We would like to thank Costain-Skanska Joint Venture (CSJV) and our industrial partner Crossrail for allowing access and instrumentation of the Paddington site. We would also like to thank Dr Munenori Shibata from Japan Railway Technical Research Institute for his assistance with network deployment.This is the author accepted manuscript. The final version is available from ACM via http://dx.doi.org/10.1145/2820990.2820997 Data supporting this paper is available from https://www.repository.cam.ac.uk/handle/1810/250538
Recommended from our members
Monitoring on the performance of temporary props using wireless strain sensing
Although temporary props have been extensively used in underground support systems, their actual performance is poorly understood, resulting in potentially conservative and over-engineered design. This paper presents the performance monitoring of 4 temporary props in an urban construction site using a newly developed wireless strain sensor node featuring a 24-bit ADC. For each prop, 6 strain gauges and 3 temperature sensors were directly attached onto the prop surface using super glue, and then connected to a wireless strain sensor node mounted in the middle span. Each sensor node transmitted both monitoring data and network diagnostic messages in near-real-Time over an IPv6-based (6LoWPAN) wireless mesh sensor network. The data were also stored locally at each node on a micro SD card. Extensive testing and calibration was undertaken in the laboratory to ensure that the system functioned as expected. The prop loads are presented without correction for temperature effects and compared with the design loads. The monitoring data reveal the development of loads in temporary props during excavation, the formation of the basement and the extraction of the props. The network performance characteristics in terms of message reception ratio and network topology evolution are also highlighted and discussed
Recommended from our members
Wireless sensor monitoring of Paddington Station Box Corner
This paper presents the real performance of three diaphragm wall panels on the southeast corner of Paddington Station Box during excavation, monitored using a wireless sensor network. In total, 15 LPDT displacement sensors, 12 tilt sensors, 13 relay nodes and a gateway were deployed at three different stages. Each wireless sensor node is programmed with Contiki OS using the in-built IPv6-based network layer (6LoWPAN/RPL) for link-local addressing and routing, and ContikiMAC at the medium access control (MAC) layer for radio duty cycling. Extensive testing and calibration was carried out in the laboratory to ensure that the system functioned as expected. Wireless tilt and displacement sensors were installed to measure the inclination, angular distortion and relative displacement of these corner panels at three different depths. The monitoring data reveal that the corner produced a stiffening effect on the station box, which might result in a breakdown of plane strain conditions. The network performance characteristics (e.g. message reception ratio and network topology status) and challenges are also highlighted and discussed
Poster abstract: Bridge structural monitoring through a vibration energy harvesting wireless sensor network
Structural monitoring applications such as corrosion assessment, measurement of concrete temperature or moisture content of critical bridge structures can greatly benefit from the use of wireless sensor networks (WSNs), however energy harvesting for the operation of the network remains a challenge in this setting. We present a multihop vibration-based energy harvesting WSN system for bridge monitoring applications. Our preliminary simulation experiments show that the system is able to maintain energy neutral operation over time, preserving energy with careful management of sleep and communication times.Engineering and Physical Sciences Research Council Innovation and Knowledge Centre for Smart Infrastructure and Construction project (Grant ID: EP/K000314/1)This is the author accepted manuscript. The final version is available from the Association for Computing Machinery via https://doi.org/10.1145/2993422.299640
Energy neutral operation of vibration energy-harvesting sensor networks for bridge applications
greatly benefit from the use of wireless sensor networks
(WSNs), however energy harvesting for the operation of the
network remains a challenge in this setting. While solar and
wind power are possible and credible solutions to energy generation,
the need for positioning sensor nodes in shaded and
sheltered locations, e.g., under a bridge deck, is also often
precluding their adoption in real-world deployments. In some
scenarios vibration energy harvesting has been shown as an
effective solution, instead.
This paper presents a multihop vibration energy-harvesting
WSN system for bridge applications. The system relies on
an ultra-low power wireless sensor node, driven by a novel
vibration based energy-harvesting technology. We use a
receiver-initiated routing protocol to enable energy-efficient
and reliable connectivity between nodes with different energy
charging capabilities. By combining real vibration data with
an experimentally validated model of the vibration energy
harvester, a hardware model, and the COOJA simulator, we
develop a framework to conduct realistic and repeatable experiments
to evaluate the system before on-site deployment.
Simulation results show that the system is able to maintain
energy neutral operation, preserving energy with careful management
of sleep and communication times. We also validate
the system through a laboratory experiment on real hardware
against real vibration data collected from a bridge. Besides
providing general guidelines and considerations for the development
of vibration energy-harvesting systems for bridge
applications, this work highlights the limitations of the energy
budget made available by traffic-induced vibrations, which
clearly shrink the applicability of vibration energy-harvesting
technology for WSNs to applications that do not generate an
overwhelming amounts of data
Irreversible Adsorption from Dilute Polymer Solutions
We study irreversible polymer adsorption from dilute solutions theoretically.
Universal features of the resultant non-equilibrium layers are predicted. Two
cases are considered, distinguished by the value of the local monomer-surface
sticking rate Q: chemisorption (very small Q) and physisorption (large Q).
Early stages of layer formation entail single chain adsorption. While single
chain physisorption times tau_ads are typically microsecs, for chemisorbing
chains of N units we find experimentally accessible times tau_ads = Q^{-1}
N^{3/5}, ranging from secs to hrs. We establish 3 chemisorption universality
classes, determined by a critical contact exponent: zipping, accelerated
zipping and homogeneous collapse. For dilute solutions, the mechanism is
accelerated zipping: zipping propagates outwards from the first attachment,
accelerated by occasional formation of large loops which nucleate further
zipping. This leads to a transient distribution omega(s) \sim s^{-7/5} of loop
lengths s up to a size s_max \approx (Q t)^{5/3} after time t. By tau_ads the
entire chain is adsorbed. The outcome of the single chain adsorption episode is
a monolayer of fully collapsed chains. Having only a few vacant sites to adsorb
onto, late arriving chains form a diffuse outer layer. In a simple picture we
find for both chemisorption and physisorption a final loop distribution
Omega(s) \sim s^{-11/5} and density profile c(z) \sim z^{-4/3} whose forms are
the same as for equilibrium layers. In contrast to equilibrium layers, however,
the statistical properties of a given chain depend on its adsorption time; the
outer layer contains many classes of chain, each characterized by different
fraction of adsorbed monomers f. Consistent with strong physisorption
experiments, we find the f values follow a distribution P(f) \sim f^{-4/5}.Comment: 18 pages, submitted to Eur. Phys. J. E, expanded discussion sectio
Quasi-stationary States of Two-Dimensional Electron Plasma Trapped in Magnetic Field
We have performed numerical simulations on a pure electron plasma system
under a strong magnetic field, in order to examine quasi-stationary states that
the system eventually evolves into. We use ring states as the initial states,
changing the width, and find that the system evolves into a vortex crystal
state from a thinner-ring state while a state with a single-peaked density
distribution is obtained from a thicker-ring initial state. For those
quasi-stationary states, density distribution and macroscopic observables are
defined on the basis of a coarse-grained density field. We compare our results
with experiments and some statistical theories, which include the
Gibbs-Boltzmann statistics, Tsallis statistics, the fluid entropy theory, and
the minimum enstrophy state. From some of those initial states, we obtain the
quasi-stationary states which are close to the minimum enstrophy state, but we
also find that the quasi-stationary states depend upon initial states, even if
the initial states have the same energy and angular momentum, which means the
ergodicity does not hold.Comment: 9 pages, 7 figure
The clinical features of the piriformis syndrome: a systematic review
Piriformis syndrome, sciatica caused by compression of the sciatic nerve by the piriformis muscle, has been described for over 70 years; yet, it remains controversial. The literature consists mainly of case series and narrative reviews. The objectives of the study were: first, to make the best use of existing evidence to estimate the frequencies of clinical features in patients reported to have PS; second, to identify future research questions. A systematic review was conducted of any study type that reported extractable data relevant to diagnosis. The search included all studies up to 1 March 2008 in four databases: AMED, CINAHL, Embase and Medline. Screening, data extraction and analysis were all performed independently by two reviewers. A total of 55 studies were included: 51 individual and 3 aggregated data studies, and 1 combined study. The most common features found were: buttock pain, external tenderness over the greater sciatic notch, aggravation of the pain through sitting and augmentation of the pain with manoeuvres that increase piriformis muscle tension. Future research could start with comparing the frequencies of these features in sciatica patients with and without disc herniation or spinal stenosis
Visual change detection on tunnel linings
We describe an automated system for detecting, localising, clustering and ranking visual changes on tunnel surfaces. The system is designed to provide assistance to expert human inspectors carrying out structural health monitoring and maintenance on ageing tunnel networks. A three-dimensional tunnel surface model is first recovered from a set of reference images using Structure from Motion techniques. New images are localised accurately within the model and changes are detected versus the reference images and model geometry. We formulate the problem of detecting changes probabilistically and evaluate the use of different feature maps and a novel geometric prior to achieve invariance to noise and nuisance sources such as parallax and lighting changes. A clustering and ranking method is proposed which efficiently presents detected changes and further improves the inspection efficiency. System performance is assessed on a real data set collected using a low-cost prototype capture device and labelled with ground truth. Results demonstrate that our system is a step towards higher frequency visual inspection at a reduced cost.The authors gratefully acknowledge the support by Toshiba Research Europe.This is the accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s00138-014-0648-8
- …
