International Conference on Embedded Wireless Systems and Networks
Doi
Abstract
greatly benefit from the use of wireless sensor networks
(WSNs), however energy harvesting for the operation of the
network remains a challenge in this setting. While solar and
wind power are possible and credible solutions to energy generation,
the need for positioning sensor nodes in shaded and
sheltered locations, e.g., under a bridge deck, is also often
precluding their adoption in real-world deployments. In some
scenarios vibration energy harvesting has been shown as an
effective solution, instead.
This paper presents a multihop vibration energy-harvesting
WSN system for bridge applications. The system relies on
an ultra-low power wireless sensor node, driven by a novel
vibration based energy-harvesting technology. We use a
receiver-initiated routing protocol to enable energy-efficient
and reliable connectivity between nodes with different energy
charging capabilities. By combining real vibration data with
an experimentally validated model of the vibration energy
harvester, a hardware model, and the COOJA simulator, we
develop a framework to conduct realistic and repeatable experiments
to evaluate the system before on-site deployment.
Simulation results show that the system is able to maintain
energy neutral operation, preserving energy with careful management
of sleep and communication times. We also validate
the system through a laboratory experiment on real hardware
against real vibration data collected from a bridge. Besides
providing general guidelines and considerations for the development
of vibration energy-harvesting systems for bridge
applications, this work highlights the limitations of the energy
budget made available by traffic-induced vibrations, which
clearly shrink the applicability of vibration energy-harvesting
technology for WSNs to applications that do not generate an
overwhelming amounts of data