15 research outputs found
Mood and cognition in healthy older European adults: the Zenith study
YesBackground: The study aim was to determine if state and trait intra-individual measures of everyday affect predict
cognitive functioning in healthy older community dwelling European adults (n = 387), aged 55-87 years.
Methods: Participants were recruited from centres in France, Italy and Northern Ireland. Trait level and variability in
positive and negative affect (PA and NA) were assessed using self-administered PANAS scales, four times a day for
four days. State mood was assessed by one PANAS scale prior to assessment of recognition memory, spatial working
memory, reaction time and sustained attention using the CANTAB computerized test battery.
Results: A series of hierarchical regression analyses were carried out, one for each measure of cognitive function as the
dependent variable, and socio-demographic variables (age, sex and social class), state and trait mood measures as the
predictors. State PA and NA were both predictive of spatial working memory prior to looking at the contribution of trait
mood. Trait PA and its variability were predictive of sustained attention. In the final step of the regression analyses, trait
PA variability predicted greater sustained attention, whereas state NA predicted fewer spatial working memory errors,
accounting for a very small percentage of the variance (1-2%) in the respective tests.
Conclusion: Moods, by and large, have a small transient effect on cognition in this older sample
Impact of primary kidney disease on the effects of empagliflozin in patients with chronic kidney disease: secondary analyses of the EMPA-KIDNEY trial
Background: The EMPA KIDNEY trial showed that empagliflozin reduced the risk of the primary composite outcome of kidney disease progression or cardiovascular death in patients with chronic kidney disease mainly through slowing progression. We aimed to assess how effects of empagliflozin might differ by primary kidney disease across its broad population. Methods: EMPA-KIDNEY, a randomised, controlled, phase 3 trial, was conducted at 241 centres in eight countries (Canada, China, Germany, Italy, Japan, Malaysia, the UK, and the USA). Patients were eligible if their estimated glomerular filtration rate (eGFR) was 20 to less than 45 mL/min per 1·73 m2, or 45 to less than 90 mL/min per 1·73 m2 with a urinary albumin-to-creatinine ratio (uACR) of 200 mg/g or higher at screening. They were randomly assigned (1:1) to 10 mg oral empagliflozin once daily or matching placebo. Effects on kidney disease progression (defined as a sustained ≥40% eGFR decline from randomisation, end-stage kidney disease, a sustained eGFR below 10 mL/min per 1·73 m2, or death from kidney failure) were assessed using prespecified Cox models, and eGFR slope analyses used shared parameter models. Subgroup comparisons were performed by including relevant interaction terms in models. EMPA-KIDNEY is registered with ClinicalTrials.gov, NCT03594110. Findings: Between May 15, 2019, and April 16, 2021, 6609 participants were randomly assigned and followed up for a median of 2·0 years (IQR 1·5–2·4). Prespecified subgroupings by primary kidney disease included 2057 (31·1%) participants with diabetic kidney disease, 1669 (25·3%) with glomerular disease, 1445 (21·9%) with hypertensive or renovascular disease, and 1438 (21·8%) with other or unknown causes. Kidney disease progression occurred in 384 (11·6%) of 3304 patients in the empagliflozin group and 504 (15·2%) of 3305 patients in the placebo group (hazard ratio 0·71 [95% CI 0·62–0·81]), with no evidence that the relative effect size varied significantly by primary kidney disease (pheterogeneity=0·62). The between-group difference in chronic eGFR slopes (ie, from 2 months to final follow-up) was 1·37 mL/min per 1·73 m2 per year (95% CI 1·16–1·59), representing a 50% (42–58) reduction in the rate of chronic eGFR decline. This relative effect of empagliflozin on chronic eGFR slope was similar in analyses by different primary kidney diseases, including in explorations by type of glomerular disease and diabetes (p values for heterogeneity all >0·1). Interpretation: In a broad range of patients with chronic kidney disease at risk of progression, including a wide range of non-diabetic causes of chronic kidney disease, empagliflozin reduced risk of kidney disease progression. Relative effect sizes were broadly similar irrespective of the cause of primary kidney disease, suggesting that SGLT2 inhibitors should be part of a standard of care to minimise risk of kidney failure in chronic kidney disease. Funding: Boehringer Ingelheim, Eli Lilly, and UK Medical Research Council
Stability of the ultrafine-grained microstructure in silver processed by ECAP and HPT
The high-temperature thermal stability of the
ultrafine-grained (UFG) microstructures in low stacking
fault energy silver was studied by differential scanning
calorimetry (DSC). The UFG microstructures were
achieved by equal-channel angular pressing (ECAP) and
high-pressure torsion (HPT) at room temperature (RT). The
defect structure in the as-processed samples was examined
by electron microscopy and X-ray line profile analysis. The
stored energy calculated from the defect densities was
compared to the heat released during DSC. The sum of the
energies stored in grain boundaries and dislocations in the
ECAP-processed samples agreed with the heat released
experimentally within the experimental error. The temperature
of the DSC peak maximum decreased while the
released heat increased with increasing numbers of ECAP
passes. The released heat for the specimen processed by
one revolution of HPT was much smaller than after 4–8
passes of ECAP despite the 2 times larger dislocation
density measured by X-ray line profile analysis. This
dichotomy was caused by the heterogeneous sandwich-like
microstructure of the HPT-processed disk: about 175 lm
wide surface layers on both sides of the disk exhibited a
UFG microstructure while the internal part was recrystallized,
thereby yielding a relatively small released heat
SLAM is a microbial sensor that regulates bacterial phagosome functions in macrophages
Phagocytosis is a pivotal process by which macrophages eliminate microorganisms after recognition by pathogen sensors. Here we unexpectedly found that the self ligand and cell surface receptor SLAM functioned not only as a costimulatory molecule but also as a microbial sensor that controlled the killing of Gram-negative bacteria by macrophages. SLAM regulated activity of the NADPH oxidase NOX2 complex and phagolysosomal maturation after entering the phagosome, following interaction with the bacterial outer membrane proteins OmpC and OmpF. SLAM recruited a complex containing the intracellular class III phosphatidylinositol kinase Vps34, its regulatory protein kinase Vps15 and the autophagy-associated molecule beclin-1 to the phagosome, which was responsible for inducing the accumulation of phosphatidylinositol-3-phosphate, a regulator of both NOX2 function and phagosomal or endosomal fusion. Thus, SLAM connects the Gram-negative bacterial phagosome to ubiquitous cellular machinery responsible for the control of bacterial killing
Significant Differences in the Hydrolysis Behavior of Amorphous and Crystalline Portions within Microcrystalline Cellulose in Hot-Compressed Water
Due to the presence of amorphous structure in microcrystalline cellulose, the reactivity of microcrystalline cellulose exhibits a considerable reduction in the initial stage during hydrolysis in hot-compressed water (HCW). Further analysis of the liquid products obtained at various temperatures suggests that the amorphous portion within microcrystalline cellulose contains some short glucose chain segments hinged with crystalline cellulose via weak bonds (e.g., hydrogen bonds). These short chain segments are reactive components responsible for the formation of C4−C13 oligomers in the primary liquid products during hydrolysis in HCW at temperatures as low as 100 °C. The minimal temperature for breaking the glycosidic bonds in those short chain segments to form glucose monomer from amorphous portion within microcrystalline cellulose is ~150 °C. However, the minimal temperature at which glucose monomer starts to be produced from the crystalline portion within microcrystalline cellulose is around 180 °C, apparently due to the limited accessibility of the glycosidic bonds in the crystalline portion to HCW as a result of the strong intra- and intermolecular hydrogen bonding networks. The differences of chain length and hydrogen bonding pattern between amorphous and crystalline cellulose also greatly affect the distribution of glucose oligomers in their liquid products during hydrolysis in HCW. Generally, amorphous cellulose produces more glucose monomers and oligomers at the same hydrolysis temperature, but the selectivity ratios of glucose oligomers in the primary liquid products from amorphous and crystalline portions do not show a monotonic trend with the degree of polymerization, at least partly resulting from the presence of shorter glucose chain segments in the amorphous portion within the microcrystalline cellulose
Impact of primary kidney disease on the effects of empagliflozin in patients with chronic kidney disease: secondary analyses of the EMPA-KIDNEY trial
Background: The EMPA-KIDNEY trial showed that empagliflozin reduced the risk of the primary composite outcome of kidney disease progression or cardiovascular death in patients with chronic kidney disease mainly through slowing progression. We aimed to assess how effects of empagliflozin might differ by primary kidney disease across its broad population. Methods: EMPA-KIDNEY, a randomised, controlled, phase 3 trial, was conducted at 241 centres in eight countries (Canada, China, Germany, Italy, Japan, Malaysia, the UK, and the USA). Patients were eligible if their estimated glomerular filtration rate (eGFR) was 20 to less than 45 mL/min per 1·73 m2, or 45 to less than 90 mL/min per 1·73 m2 with a urinary albumin-to-creatinine ratio (uACR) of 200 mg/g or higher at screening. They were randomly assigned (1:1) to 10 mg oral empagliflozin once daily or matching placebo. Effects on kidney disease progression (defined as a sustained ≥40% eGFR decline from randomisation, end-stage kidney disease, a sustained eGFR below 10 mL/min per 1·73 m2, or death from kidney failure) were assessed using prespecified Cox models, and eGFR slope analyses used shared parameter models. Subgroup comparisons were performed by including relevant interaction terms in models. EMPA-KIDNEY is registered with ClinicalTrials.gov, NCT03594110. Findings: Between May 15, 2019, and April 16, 2021, 6609 participants were randomly assigned and followed up for a median of 2·0 years (IQR 1·5-2·4). Prespecified subgroupings by primary kidney disease included 2057 (31·1%) participants with diabetic kidney disease, 1669 (25·3%) with glomerular disease, 1445 (21·9%) with hypertensive or renovascular disease, and 1438 (21·8%) with other or unknown causes. Kidney disease progression occurred in 384 (11·6%) of 3304 patients in the empagliflozin group and 504 (15·2%) of 3305 patients in the placebo group (hazard ratio 0·71 [95% CI 0·62-0·81]), with no evidence that the relative effect size varied significantly by primary kidney disease (pheterogeneity=0·62). The between-group difference in chronic eGFR slopes (ie, from 2 months to final follow-up) was 1·37 mL/min per 1·73 m2 per year (95% CI 1·16-1·59), representing a 50% (42-58) reduction in the rate of chronic eGFR decline. This relative effect of empagliflozin on chronic eGFR slope was similar in analyses by different primary kidney diseases, including in explorations by type of glomerular disease and diabetes (p values for heterogeneity all >0·1). Interpretation: In a broad range of patients with chronic kidney disease at risk of progression, including a wide range of non-diabetic causes of chronic kidney disease, empagliflozin reduced risk of kidney disease progression. Relative effect sizes were broadly similar irrespective of the cause of primary kidney disease, suggesting that SGLT2 inhibitors should be part of a standard of care to minimise risk of kidney failure in chronic kidney disease. Funding: Boehringer Ingelheim, Eli Lilly, and UK Medical Research Council