973 research outputs found

    Thermo-oxidative stability of graphite fiber/PMR-15 polyimide composites at 350 deg C

    Get PDF
    A series of graphite fiber/PMR-15 polyimide composites were subjected to isothermal aging at 350 C in flowing air (100 cc/min and 1000 cc/min) over a 520 hr time period. The graphite fibers were analyzed by ISS/SIMS techniques before composite fabrication. Fibers exposed at the surface of the composite due to the isothermal aging process were also analyzed by the ISS/SIMS method. Component and composite weight less studies were also conducted for similarly exposed materials. Optical micrograph investigations of composites to follow the progress of the thermo-oxidative process were also conducted. Flexural and interlaminar shear strengths of the imaged and aged composites were measured. The relationship of component and composite properties as they relate to the thermo-oxidative behavior of the materials was discussed

    Imide modified epoxy matrix resins

    Get PDF
    High char yield epoxy using novel bisimide amines (BIA's) as curing agents with a state of the art epoxy resin was developed. Stoichiometric quantities of the epoxy resin and the BIA's were studied to determine the cure cycle required for preparation of resin specimens. The bisimide cured epoxies were designated IME's (imide modified epoxy). The physical, thermal and mechanical properties of these novel resins were determined. The levels of moisture absorption exhibited by the bisimide amine cured expoxies (IME's) were considerably lower than the state of the art epoxies. The strain-to-failure of the control resin system was improved 25% by replacement of DDS with 6F-DDS. Each BIA containing resin exhibited twice the char yield of the control resin MY 720/DDS. Graphite fiber reinforced control (C) and IME resins were fabricated and characterized. Two of the composite systems showed superior properties compared to the other Celion 6000/IME composite systems and state of the art graphite epoxy systems. The two systems exhibited excellent wet shear and flexural strengths and moduli at 300 and 350 F

    Study of high resistance inorganic coatings on graphite fibers

    Get PDF
    Coatings made of boron, silicon carbide, silica, and silica-like materials were studied to determine their ability to increase resistance of graphite fibers. The most promising results were attained by chemical vapor depositing silicon carbide on graphite fiber followed by oxidation, and drawing graphite fiber through ethyl silicate followed by appropriate heat treatments. In the silicon carbide coating studies, no degradation of the graphite fibers was observed and resistance values as high as three orders of magnitude higher than that of the uncoated fiber was attained. The strength of a composite fabricated from the coated fiber had a strength which compared favorably with those of composites prepared from uncoated fiber. For the silica-like coated fiber prepared by drawing the graphite fiber through an ethyl silicate solution followed by heating, coated fiber resistances about an order of magnitude greater than that of the uncoated fiber were attained. Composites prepared using these fibers had flexural strengths comparable with those prepared using uncoated fibers, but the shear strengths were lower

    Coatings for graphite fibers

    Get PDF
    Graphite fibers released from composites during burning or an explosion caused shorting of electrical and electronic equipment. Silicon carbide, silica, silicon nitride and boron nitride were coated on graphite fibers to increase their electrical resistances. Resistances as high as three orders of magnitude higher than uncoated fiber were attained without any significant degradation of the substrate fiber. An organo-silicone approach to produce coated fibers with high electrical resistance was also used. Celion 6000 graphite fibers were coated with an organo-silicone compound, followed by hydrolysis and pyrolysis of the coating to a silica-like material. The shear and flexural strengths of composites made from high electrically resistant fibers were considerably lower than the shear and flexural strengths of composites made from the lower electrically resistant fibers. The lower shear strengths of the composites indicated that the coatings on these fibers were weaker than the coating on the fibers which were pyrolyzed at higher temperature

    Pathological implications of Th1/Th2 cytokine genetic variants in Beh\ue7et's disease: Data from a pilot study in a Sicilian population

    Get PDF
    Cytokines act as pleiotropic polypeptides able to regulate inflammatory/immune responses and to provide important signals in physiological and pathological processes. Several cytokines (Th1, Th2, and Th17) seem to be involved in the pathophysiology of Beh\ue7et's disease, a chronic immune-mediated disease characterized by oral and genital lesions and ocular inflammation. Its individual susceptibility seems to be modulated by genetic variants in genes codifying these cytokines. Th1 and Th17 seem to be involved in the disease's active phases, and Th2 seems to affect the development or severity of the disease; however, contrasting data are reported. In this study, some genetic variants of the Th1/Th2 cytokine genes were investigated in Sicilian patients and age- and gender-matched controls. Three very significant associations with Beh\ue7et's disease were detected, and combined genotypes associated with increased disease risk were identified. Results obtained point to the key role of Th1/Th2 cytokine genetic variants in disease susceptibility

    Why pinning by surface irregularities can explain the peak effect in transport properties and neutron diffraction results in NbSe2 and Bi-2212 crystals?

    Full text link
    The existence of a peak effect in transport properties (a maximum of the critical current as function of magnetic field) is a well-known but still intriguing feature of type II superconductors such as NbSe2 and Bi-2212. Using a model of pinning by surface irregularities in anisotropic superconductors, we have developed a calculation of the critical current which allows estimating quantitatively the critical current in both the high critical current phase and in the low critical current phase. The only adjustable parameter of this model is the angle of the vortices at the surface. The agreement between the measurements and the model is really very impressive. In this framework, the anomalous dynamical properties close to the peak effect is due to co-existence of two different vortex states with different critical currents. Recent neutron diffraction data in NbSe2 crystals in presence of transport current support this point of view

    Cytokine serum profile in a group of Sicilian Nonagenarians

    Get PDF
    The aim of our study was to evaluate the possibility of using multiplex analysis of the cytokine profile as a marker for successful aging by comparing cytokine plasmatic levels of a group of Sicilian nonagenarians with those of young controls. We analyzed a panel of 17 cytokines, comprehensive of haematopoietic factors T helper 1 (Th1), Th2, inflammation regulatory cytokines, and chemokines. The assay was carried out using the Luminex system. Interleukin (IL)-6 levels (p = 0.01) were increased in nonagenarians, whereas no modifications of other proinflammatory cytokines and chemokines were observed. Interferon-gamma (IFN-gamma) and IL-2 levels are unmodified, suggesting a substantial maintenance of relevant T cell functions. In addition, a significant increase of IL-12 serum levels in nonagenarians versus young controls that might be related to the increase of natural killer (NK) cell functions characterizing aging processes was observed. The analysis of Th2 cytokines show an increase of IL-13 and a reduction of IL-4 levels mirroring the maintenance of some effector's mechanisms of the immunoresponse in advanced ages. Our results suggest that the multiplex analysis of cytokine levels might be useful in defining a successful aging profile

    White paper: CeLAND - Investigation of the reactor antineutrino anomaly with an intense 144Ce-144Pr antineutrino source in KamLAND

    Full text link
    We propose to test for short baseline neutrino oscillations, implied by the recent reevaluation of the reactor antineutrino flux and by anomalous results from the gallium solar neutrino detectors. The test will consist of producing a 75 kCi 144Ce - 144Pr antineutrino source to be deployed in the Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND). KamLAND's 13m diameter target volume provides a suitable environment to measure energy and position dependence of the detected neutrino flux. A characteristic oscillation pattern would be visible for a baseline of about 10 m or less, providing a very clean signal of neutrino disappearance into a yet-unknown, "sterile" state. Such a measurement will be free of any reactor-related uncertainties. After 1.5 years of data taking the Reactor Antineutrino Anomaly parameter space will be tested at > 95% C.L.Comment: White paper prepared for Snowmass-2013; slightly different author lis

    Online Monitoring of the Osiris Reactor with the Nucifer Neutrino Detector

    Full text link
    Originally designed as a new nuclear reactor monitoring device, the Nucifer detector has successfully detected its first neutrinos. We provide the second shortest baseline measurement of the reactor neutrino flux. The detection of electron antineutrinos emitted in the decay chains of the fission products, combined with reactor core simulations, provides an new tool to assess both the thermal power and the fissile content of the whole nuclear core and could be used by the Inter- national Agency for Atomic Energy (IAEA) to enhance the Safeguards of civil nuclear reactors. Deployed at only 7.2m away from the compact Osiris research reactor core (70MW) operating at the Saclay research centre of the French Alternative Energies and Atomic Energy Commission (CEA), the experiment also exhibits a well-suited configuration to search for a new short baseline oscillation. We report the first results of the Nucifer experiment, describing the performances of the 0.85m3 detector remotely operating at a shallow depth equivalent to 12m of water and under intense background radiation conditions. Based on 145 (106) days of data with reactor ON (OFF), leading to the detection of an estimated 40760 electron antineutrinos, the mean number of detected antineutrinos is 281 +- 7(stat) +- 18(syst) electron antineutrinos/day, in agreement with the prediction 277(23) electron antineutrinos/day. Due the the large background no conclusive results on the existence of light sterile neutrinos could be derived, however. As a first societal application we quantify how antineutrinos could be used for the Plutonium Management and Disposition Agreement.Comment: 22 pages, 16 figures - Version

    Imide modified epoxy matrix resins

    Get PDF
    Results of a program designed to develop tough imide modified epoxy (IME) resins cured by bisimide amine (BIA) hardeners are presented. State of the art epoxy resin, MY720, was used. Three aromatic bisimide amines and one aromatic aliphatic BIA were evaluated. BIA's derived from 6F anhydride (3,3 prime 4,4 prime-(hexafluoro isopropyl idene) bis (phthalic anhydride) and diamines, 3,3 prime-diam nodiphenyl sulfone (3,3 prime-DDS), 4,4 prime-diamino diphenyl sulfone (4,4 prime-DDS), 1.12-dodecane diamine (1,12-DDA) were used. BIA's were abbreviated 6F-3,3 prime-DDS, 6F-4,4 prime-DDS, 6F-3,3 prime-DDS-4,4 prime DDS, and 6F-3,3 prime-DDS-1,12-DDA corresponding to 6F anhydride and diamines mentioned. Epoxy resin and BIA's (MY720/6F-3,3 prime-DDS, MY720/6F-3,3 prime-DDS-4,4 prime-DDS, MY720/6F-3,3 prime-DDS-1,12-DDA and a 50:50 mixture of a BIA and parent diamine, MY720/6F-3,3 prime-DDS/3,3 prime-DDS, MY720/6F-3,3 prime-DDS-4,4 prime-DDS/3,3 prime-DDS, MY720/6F-3,3 prime-DDS-1,12-DDA/3,3 prime-DDS were studied to determine effect of structure and composition. Effect of the addition of two commercial epoxies, glyamine 200 and glyamine 100 on the properties of several formulations was evaluated. Bisimide amine cured epoxies were designated IME's (imide modified epoxy). Physical, thermal and mechanical properties of these resins were determined. Moisture absorption in boiling water exhibited by several of the IME's was considerably lower than the state of the art epoxies (from 3.2% for the control and state of the art to 2.0 wt% moisture absorption). Char yields are increased from 20% for control and state of the art epoxies to 40% for IME resins. Relative toughness characteristics of IME resins were measured by 10 deg off axis tensile tests of Celion 6000/IME composites. Results show that IME's containing 6F-3,3 prime-DDS or 6F-3,3 prime-DDS-1,12-DDA improved the "toughness" characteristics of composites by about 35% (tensile strength), about 35% (intralaminar shear strength), and about 78% (shear strain to failure) relative to the control composite
    corecore