3,424 research outputs found

    A Conceptual Harmonization between the SSA Disability Determination Process and ICF and DOT Frameworks: A Guide to Assessing the Mental Residual Functional Capacity of Individuals with Autism Spectrum Disorders

    Get PDF
    The aim of the current project is to create a useful product that cross-walks the Social Security Administration’s (SSA) Mental Residual Functional Capacity Assessment (MRFCA) with the International Classification of Functioning (ICF) and the Dictionary of Occupational Titles (DOT) applied to a population of individuals with Autism Spectrum Disorders (ASD). SSA’s MRFCA is cross-walked with the ICF in order to allow for a more in depth and functional breakdown of the purposefully more generic categories of the MRFCA. Worker Functions derived from the DOT are then added to the SSA/ICF crosswalk in order to better operationalize the functional manifestations associated with disability states as they occur in a natural (work) environment. Finally, a decision tree is developed from the crosswalk to increase ease of use of the product, titled the MRFCA Decision Tree. ASD was chosen as an exemplar to test this process. Inter-rater reliability on the MRFCA Decision Tree is assessed. The outcomes are the following: (a) A MRFCA Decision Tree that will allow a disability examiner to derive a more reliable disability decision when assessing individuals with ASD,(b) A breakdown of the current DDP process including problem areas and improvement suggestions based on the implementation of the decision tree, and (c) A narrative review of how coordinating the DOT with the ICF can provide a deeper understanding of how functional manifestations of a disability relate to job demands. Plans for future research aimed at improving the decision tree are discussed

    Blackbody-radiation-assisted molecular laser cooling

    Full text link
    The translational motion of molecular ions can be effectively cooled sympathetically to temperatures below 100 mK in ion traps through Coulomb interactions with laser-cooled atomic ions. The distribution of internal rovibrational states, however, gets in thermal equilibrium with the typically much higher temperature of the environment within tens of seconds. We consider a concept for rotational cooling of such internally hot, but translationally cold heteronuclear diatomic molecular ions. The scheme relies on a combination of optical pumping from a few specific rotational levels into a ``dark state'' with redistribution of rotational populations mediated by blackbody radiation.Comment: 4 pages, 5 figure

    A Variational Approach to Bound States in Quantum Field Theory

    Full text link
    We consider here in a toy model an approach to bound state problem in a nonperturbative manner using equal time algebra for the interacting field operators. Potential is replaced by offshell bosonic quanta inside the bound state of nonrelativistic particles. The bosonic dressing is determined through energy minimisation, and mass renormalisation is carried out in a nonperturbative manner. Since the interaction is through a scalar field, it does not include spin effects. The model however nicely incorporates an intuitive picture of hadronic bound states in which the gluon fields dress the quarks providing the binding between them and also simulate the gluonic content of hadrons in deep inelastic collisions.Comment: latex, revtex, 22 page

    Mild Normobaric Hypoxia Exposure for Human-Autonomy System Testing

    Get PDF
    An experiment investigated the impact of normobaric hypoxia induction on aircraft pilot performance to specifically evaluate the use of hypoxia as a method to induce mild cognitive impairment to explore human-autonomous systems integration opportunities. Results of this exploratory study show that the effect of 15,000 feet simulated altitude did not induce cognitive deficits as indicated by performance on written, computer-based, or simulated flight tasks. However, the subjective data demonstrated increased effort by the human test subject pilots to maintain equivalent performance in a flight simulation task. This study represents current research intended to add to the current knowledge of performance decrement and pilot workload assessment to improve automation support and increase aviation safety

    Speckle interferometry and radiative transfer modelling of the Wolf-Rayet star WR 118

    Get PDF
    WR 118 is a highly evolved Wolf-Rayet star of the WC10 subtype surrounded by a permanent dust shell absorbing and re-emitting in the infrared a considerable fraction of the stellar luminosity. We present the first diffraction-limited 2.13micron speckle interferometric observations of WR 118 with 73 mas resolution. The speckle interferograms were obtained with the 6m telescope at the Special Astrophysical Observatory. The two-dimensional visibility function of the object does not show any significant deviation from circular symmetry. The visibility curve declines towards the diffraction cut-off frequency to 0.66 and can be approximated by a linear function. Radiative transfer calculations have been carried out to model the spectral energy distribution, given in the range of 0.5-25micron, and our 2.13micron visibility function, assuming spherical symmetry of the dust shell. Both can be fitted with a model containing double-sized grains (``small'' and ``large'') with the radii of a = 0.05micron and 0.38micron, and a mass fraction of the large grains greater than 65%. Alternatively, a good match can be obtained with the grain size distribution function n(a)~a^-3, with a ranging between 0.005micron and 0.6micron. At the inner boundary of the modelled dust shell (angular diameter (17 +/- 1)mas), the temperature of the smallest grains and the dust shell density are 1750K +/- 100K and (1 +/- 0.2)x10^-19 g/cm^3, respectively. The dust formation rate is found to be (1.3 +/- 0.5)x10^-7 Msol/yr assuming Vwind = 1200 km/s.Comment: 6 pages including 4 PostScript figures, also available from http://www.mpifr-bonn.mpg.de/div/ir-interferometry/publications.html; accepted for publication in Astronomy & Astrophysic

    New Interstellar Dust Models Consistent with Extinction, Emission, and Abundance Constraints

    Full text link
    We present new interstellar dust models which have been derived by simultaneously fitting the far-ultraviolet to near-infrared extinction, the diffuse infrared (IR) emission and, unlike previous models, the elemental abundance constraints on the dust for different interstellar medium abundances, including solar, F and G star, and B star abundances. The fitting problem is a typical ill-posed inversion problem, in which the grain size distribution is the unknown, which we solve by using the method of regularization. The dust model contains various components: PAHs, bare silicate, graphite, and amorphous carbon particles, as well as composite particles containing silicate, organic refractory material, water ice, and voids. The optical properties of these components were calculated using physical optical constants. As a special case, we reproduce the Li & Draine (2001) results, however their model requires an excessive amount of silicon, magnesium, and iron to be locked up in dust: about 50 ppm (atoms per million of H atoms), significantly more than the upper limit imposed by solar abundances of these elements, about 34, 35, and 28 ppm, respectively. A major conclusion of this paper is that there is no unique interstellar dust model that simultaneously fits the observed extinction, diffuse IR emission, and abundances constraints.Comment: 70 pages, 23 figures, accepted for publication in the Astrophysical Journal Supplemen

    Mid-infrared imaging and spectroscopy of the enigmatic cocoon stars in the Quintuplet Cluster

    Get PDF
    In an attempt to determine the nature of the enigmatic cocoon stars in the Quintuplet Cluster, we have obtained mid-infrared imaging and spectrophotometry of the cluster, using the CAM and SWS instruments on ISO, using SpectroCam-10 on the Palomar 5m telescope, and NICMOS on HST. The spectra show smooth continua with various dust and ice absorption features. These features are all consistent with an interstellar origin, and there is no clear evidence for any circumstellar contribution to these features. We find no spectral line or feature that could elucidate the nature of these sources. Detailed modeling of the silicate absorption features shows that they are best reproduced by the mu Cep profile, which is typical of the interstellar medium, with tau(sil) \sim 2.9. The high spatial resolution mid-IR images show that three of the five cocoon stars have spatially extended and asymmetric envelopes, with diameters of \sim 20,000 AUs. A reddening law similar to that of Lutz (1999) but with silicate features based on the mu Cep profile and normalized to our value of tau(sil) is used to deredden the observed spectrophotometry. The dereddened energy distributions are characterised by temperatures of 750-925 K, somewhat cooler than determined from near IR data alone. Models of optically thin and geometrically thick dust shells, as used by Williams et al. (1987) for very dusty, late-type WC stars, reproduce the observed SEDs from 4 to 17 mic, and imply shell luminosities of log(L/L(sun)) \sim 4.5-4.9 for the brightest four components. An analysis of the various suggestions proposed to explain the nature of the cocoon stars reveals serious problems with all the hypotheses, and the nature of these sources remains an enigma.Comment: 16 pages, 11 figures, A&A style. Accepted by A&

    Report of the International Society of Hypertension (ISH) Hypertension Teaching Seminar organized by the ISH Africa Regional Advisory Group: Maputo, Mozambique, 2016

    Get PDF
    The International Society of Hypertension (ISH), in fulfilment of its mission of promoting hypertension control and prevention and also of advancing knowledge globally, organizes hypertension teaching seminars or ‘summer schools’ worldwide through the ISH Regional Advisory Groups. In Africa, seven of such seminars have been organized. This is a report of the eighth seminar held in Maputo, Mozambique, April, 2016. The seminar was attended by over 65 participants from 11 African countries. The Faculty consisted of 11 international hypertension experts. The eighth African hypertension seminar was a great success as confirmed by a pre- and post-test questionnaire
    corecore