5,485 research outputs found
Optimal Sobolev type inequalities in Lorentz spaces
It is well known that the classical Sobolev embeddings may be improved within the framework of Lorentz spaces L p,q : the space D 1,p (R n ) , 1\u2009<\u2009p\u2009<\u2009n, embeds into L p 17 ,q (R n ) , p\u2009 64\u2009q\u2009 64\u2009 1e. However, the value of the best possible embedding constants in the corresponding inequalities is known just in the case L p 17 ,p (R n ) . Here, we determine optimal constants for the embedding of the space D 1,p (R n ) , 1\u2009<\u2009p\u2009<\u2009n, into the whole Lorentz space scale L p 17 ,q (R n ) , p\u2009 64\u2009q\u2009 64\u2009 1e, including the limiting case q\u2009=\u2009p of which we give a new proof. We also exhibit extremal functions for these embedding inequalities by solving related elliptic problems
Lifshitz transition from valence fluctuations in YbAl3
In Kondo lattice systems with mixed valence, such as YbAl3, interactions
between localized electrons in a partially filled f shell and delocalized
conduction electrons can lead to fluctuations between two different valence
configurations with changing temperature or pressure. The impact of this change
on the momentum-space electronic structure and Fermi surface topology is
essential for understanding their emergent properties, but has remained
enigmatic due to a lack of appropriate experimental probes. Here by employing a
combination of molecular beam epitaxy (MBE) and in situ angle-resolved
photoemission spectroscopy (ARPES) we show that valence fluctuations can lead
to dramatic changes in the Fermi surface topology, even resulting in a Lifshitz
transition. As the temperature is lowered, a small electron pocket in YbAl3
becomes completely unoccupied while the low-energy ytterbium (Yb) 4f states
become increasingly itinerant, acquiring additional spectral weight, longer
lifetimes, and well-defined dispersions. Our work presents the first unified
picture of how local valence fluctuations connect to momentum space concepts
including band filling and Fermi surface topology in the longstanding problem
of mixed-valence systems.Comment: 18 pages, 11 figure
Quantifying electronic correlation strength in a complex oxide: a combined DMFT and ARPES study of LaNiO
The electronic correlation strength is a basic quantity that characterizes
the physical properties of materials such as transition metal oxides.
Determining correlation strengths requires both precise definitions and a
careful comparison between experiment and theory. In this paper we define the
correlation strength via the magnitude of the electron self-energy near the
Fermi level. For the case of LaNiO, we obtain both the experimental and
theoretical mass enhancements by considering high resolution
angle-resolved photoemission spectroscopy (ARPES) measurements and density
functional + dynamical mean field theory (DFT + DMFT) calculations. We use
valence-band photoemission data to constrain the free parameters in the theory,
and demonstrate a quantitative agreement between the experiment and theory when
both the realistic crystal structure and strong electronic correlations are
taken into account. These results provide a benchmark for the accuracy of the
DFT+DMFT theoretical approach, and can serve as a test case when considering
other complex materials. By establishing the level of accuracy of the theory,
this work also will enable better quantitative predictions when engineering new
emergent properties in nickelate heterostructures.Comment: 10 pages, 5 figure
Interplay of Spin-Orbit Interactions, Dimensionality, and Octahedral Rotations in Semimetallic SrIrO
We employ reactive molecular-beam epitaxy to synthesize the metastable
perovskite SrIrO and utilize {\it in situ} angle-resolved photoemission
to reveal its electronic structure as an exotic narrow-band semimetal. We
discover remarkably narrow bands which originate from a confluence of strong
spin-orbit interactions, dimensionality, and both in- and out-of-plane IrO
octahedral rotations. The partial occupation of numerous bands with strongly
mixed orbital characters signals the breakdown of the single-band Mott picture
that characterizes its insulating two-dimensional counterpart,
SrIrO, illustrating the power of structure-property relations for
manipulating the subtle balance between spin-orbit interactions and
electron-electron interactions
exploding clusters dynamics probed by XUV fluorescence
Clusters excited by intense laser pulses are a unique source of warm dense
matter, that has been the subject of intensive experimental studies. The
majority of those investigations concerns atomic clusters, whereas the
evolution of molecular clusters excited by intense laser pulses is less
explored. In this work we trace the dynamics of clusters
triggered by a few-cycle 1.45-m driving pulse through the detection of XUV
fluorescence induced by a delayed 800-nm ignition pulse. Striking differences
among fluorescence dynamics from different ionic species are observed
Bubble concentration on spheres for supercritical elliptic problems
We consider the supercritical Lane-Emden problem (P_\eps)\qquad
-\Delta v= |v|^{p_\eps-1} v \ \hbox{in}\ \mathcal{A} ,\quad u=0\ \hbox{on}\
\partial\mathcal{A}
where is an annulus in \rr^{2m}, and
p_\eps={(m+1)+2\over(m+1)-2}-\eps, \eps>0.
We prove the existence of positive and sign changing solutions of (P_\eps)
concentrating and blowing-up, as \eps\to0, on dimensional spheres.
Using a reduction method (see Ruf-Srikanth (2010) J. Eur. Math. Soc. and
Pacella-Srikanth (2012) arXiv:1210.0782)we transform problem (P_\eps) into a
nonhomogeneous problem in an annulus \mathcal D\subset \rr^{m+1} which can be
solved by a Ljapunov-Schmidt finite dimensional reduction
Proposal to Search for Heavy Neutral Leptons at the SPS
A new fixed-target experiment at the CERN SPS accelerator is proposed that
will use decays of charm mesons to search for Heavy Neutral Leptons (HNLs),
which are right-handed partners of the Standard Model neutrinos. The existence
of such particles is strongly motivated by theory, as they can simultaneously
explain the baryon asymmetry of the Universe, account for the pattern of
neutrino masses and oscillations and provide a Dark Matter candidate.
Cosmological constraints on the properties of HNLs now indicate that the
majority of the interesting parameter space for such particles was beyond the
reach of the previous searches at the PS191, BEBC, CHARM, CCFR and NuTeV
experiments. For HNLs with mass below 2 GeV, the proposed experiment will
improve on the sensitivity of previous searches by four orders of magnitude and
will cover a major fraction of the parameter space favoured by theoretical
models.
The experiment requires a 400 GeV proton beam from the SPS with a total of
2x10^20 protons on target, achievable within five years of data taking. The
proposed detector will reconstruct exclusive HNL decays and measure the HNL
mass. The apparatus is based on existing technologies and consists of a target,
a hadron absorber, a muon shield, a decay volume and two magnetic
spectrometers, each of which has a 0.5 Tm magnet, a calorimeter and a muon
detector. The detector has a total length of about 100 m with a 5 m diameter.
The complete experimental set-up could be accommodated in CERN's North Area.
The discovery of a HNL would have a great impact on our understanding of
nature and open a new area for future research
Hamiltonian Light-Front Field Theory: Recent Progress and Tantalizing Prospects
Fundamental theories, such as Quantum Electrodynamics (QED) and Quantum
Chromodynamics (QCD) promise great predictive power addressing phenomena over
vast scales from the microscopic to cosmic scales. However, new
non-perturbative tools are required for physics to span from one scale to the
next. I outline recent theoretical and computational progress to build these
bridges and provide illustrative results for Hamiltonian Light Front Field
Theory. One key area is our development of basis function approaches that cast
the theory as a Hamiltonian matrix problem while preserving a maximal set of
symmetries. Regulating the theory with an external field that can be removed to
obtain the continuum limit offers additional possibilities as seen in an
application to the anomalous magnetic moment of the electron. Recent progress
capitalizes on algorithm and computer developments for setting up and solving
very large sparse matrix eigenvalue problems. Matrices with dimensions of 20
billion basis states are now solved on leadership-class computers for their
low-lying eigenstates and eigenfunctions.Comment: 8 pages with 2 figure
Recommended from our members
Mycolactone-dependent depletion of endothelial cell thrombomodulin is strongly associated with fibrin deposition in Buruli ulcer lesions
A well-known histopathological feature of diseased skin in Buruli ulcer (BU) is coagulative necrosis caused by the Mycobacterium ulcerans macrolide exotoxin mycolactone. Since the underlying mechanism is not known, we have investigated the effect of mycolactone on endothelial cells, focussing on the expression of surface anticoagulant molecules involved in the protein C anticoagulant pathway. Congenital deficiencies in this natural anticoagulant pathway are known to induce thrombotic complications such as purpura fulimans and spontaneous necrosis. Mycolactone profoundly decreased thrombomodulin (TM) expression on the surface of human dermal microvascular endothelial cells (HDMVEC) at doses as low as 2ng/ml and as early as 8hrs after exposure. TM activates protein C by altering thrombin's substrate specificity, and exposure of HDMVEC to mycolactone for 24 hours resulted in an almost complete loss of the cells' ability to produce activated protein C. Loss of TM was shown to be due to a previously described mechanism involving mycolactone-dependent blockade of Sec61 translocation that results in proteasome-dependent degradation of newly synthesised ER-transiting proteins. Indeed, depletion from cells determined by live-cell imaging of cells stably expressing a recombinant TM-GFP fusion protein occurred at the known turnover rate. In order to determine the relevance of these findings to BU disease, immunohistochemistry of punch biopsies from 40 BU lesions (31 ulcers, nine plaques) was performed. TM abundance was profoundly reduced in the subcutis of 78% of biopsies. Furthermore, it was confirmed that fibrin deposition is a common feature of BU lesions, particularly in the necrotic areas. These findings indicate that there is decreased ability to control thrombin generation in BU skin. Mycolactone's effects on normal endothelial cell function, including its ability to activate the protein C anticoagulant pathway are strongly associated with this. Fibrin-driven tisischemia could contribute to the development of the tissue necrosis seen in BU lesions
Disorder-induced phonon self-energy of semiconductors with binary isotopic composition
Self-energy effects of Raman phonons in isotopically disordered
semiconductors are deduced by perturbation theory and compared to experimental
data. In contrast to the acoustic frequency region, higher-order terms
contribute significantly to the self-energy at optical phonon frequencies. The
asymmetric dependence of the self-energy of a binary isotope system on the concentration of the heavier isotope mass x can be explained by
taking into account second- and third-order perturbation terms. For elemental
semiconductors, the maximum of the self-energy occurs at concentrations with
, depending on the strength of the third-order term. Reasonable
approximations are imposed that allow us to derive explicit expressions for the
ratio of successive perturbation terms of the real and the imaginary part of
the self-energy. This basic theoretical approach is compatible with Raman
spectroscopic results on diamond and silicon, with calculations based on the
coherent potential approximation, and with theoretical results obtained using
{\it ab initio} electronic theory. The extension of the formalism to binary
compounds, by taking into account the eigenvectors at the individual
sublattices, is straightforward. In this manner, we interpret recent
experimental results on the disorder-induced broadening of the TO (folded)
modes of SiC with a -enriched carbon sublattice.
\cite{Rohmfeld00,Rohmfeld01}Comment: 29 pages, 9 figures, 2 tables, submitted to PR
- …
