98 research outputs found

    C2 Odontoid Fracture Associated with C1-C2 Rotatory Dislocation: A Retrospective Analysis of 2 Surgical Techniques.

    Get PDF
    Odontoid fractures in association with a C1-C2 rotatory luxation reports are seldom found in the literature. The fusion between the lateral mass of C1 and C2 could be of interest to ensure adequate treatment in these particular cases. We report 23 cases where there was coexistence of an odontoid fracture and rotatory subluxation, which were treated surgically using cages between C1 and C2 or just traditional Goel-Harms technique. We evaluated the radiologic fusion rate, reoperation rate, and complications. This was a single-center, retrospective, cohort study of patients with C2 fractures (mixed type and C1-C2 rotatory luxation according to the Fielding classification) who were treated surgically. Radiologic computed tomography scans were used to assess fusion (presence of bridging trabecular bone end plate or pseudoarthrosis) between 6 months and 1.5 years after the surgery. Twenty-three patients were diagnosed with C2 fractures and C1-C2 rotatory luxation that were treated surgically and were suitable for the analysis; 11 patients underwent C1-C2 fusion with intra-articular cages, and 12 underwent a classical Goel-Harms technique. The fusion rate at the C1-C2 joint was higher in the cages group. Only 12 patients exhibited fusion at the level of the odontoid fracture. C2 fractures associated with C1-C2 rotatory dislocation are rare. The fusion rate at the level of the odontoid in these patients appears to be lower than that reported in patients without rotatory dislocation. It may be of special interest to obtain a clear fusion at the C1-C2 joint, where this type of implant seems to offer an advantage

    Analysis of the Trajectory of Drosophila melanogaster in a Circular Open Field Arena

    Get PDF
    BACKGROUND: Obtaining a complete phenotypic characterization of a freely moving organism is a difficult task, yet such a description is desired in many neuroethological studies. Many metrics currently used in the literature to describe locomotor and exploratory behavior are typically based on average quantities or subjectively chosen spatial and temporal thresholds. All of these measures are relatively coarse-grained in the time domain. It is advantageous, however, to employ metrics based on the entire trajectory that an organism takes while exploring its environment. METHODOLOGY/PRINCIPAL FINDINGS: To characterize the locomotor behavior of Drosophila melanogaster, we used a video tracking system to record the trajectory of a single fly walking in a circular open field arena. The fly was tracked for two hours. Here, we present techniques with which to analyze the motion of the fly in this paradigm, and we discuss the methods of calculation. The measures we introduce are based on spatial and temporal probability distributions and utilize the entire time-series trajectory of the fly, thus emphasizing the dynamic nature of locomotor behavior. Marginal and joint probability distributions of speed, position, segment duration, path curvature, and reorientation angle are examined and related to the observed behavior. CONCLUSIONS/SIGNIFICANCE: The measures discussed in this paper provide a detailed profile of the behavior of a single fly and highlight the interaction of the fly with the environment. Such measures may serve as useful tools in any behavioral study in which the movement of a fly is an important variable and can be incorporated easily into many setups, facilitating high-throughput phenotypic characterization

    Does the Precision of a Biological Clock Depend upon Its Period? Effects of the Duper and tau Mutations in Syrian Hamsters

    Get PDF
    Mutations which alter the feedback loops that generate circadian rhythms may provide insight into their insensitivity to perturbation robustness) and their consistency of period (precision). I examined relationships between endogenous period, activity and rest (τDD, α and ρ) in Syrian hamsters using two different mutations, duper and tau, both of which speed up the circadian clock. I generated 8 strains of hamsters that are homozygous or heterozygous for the tau, duper, and wild type alleles in all combinations. The endogenous period of activity onsets among these strains ranged from 17.94+0.04 to 24.13±0.04 h. Contrary to predictions, the variability of period was unrelated to its absolute value: all strains showed similar variability of τDD when activity onsets and acrophase were used as phase markers. The τDD of activity offsets was more variable than onsets but also differed little between genotypes. Cycle variation and precision were not correlated with τDD within any strain, and only weakly correlated when all strains are considered together. Only in animals homozygous for both mutations (super duper hamsters) were cycle variation and precision reduced. Rhythm amplitude differed between strains and was positively correlated with τDD and precision. All genotypes showed negative correlations between α and ρ. This confirms the expectation that deviations in the duration of subjective day and night should offset one another in order to conserve circadian period, even though homeostatic maintenance of energy reserves predicts that longer intervals of activity or rest would be followed by longer durations of rest or activity. Females consistently showed greater variability of the period of activity onset and acrophase, and of α, but variability of the period of offset differed between sexes only in super duper hamsters. Despite the differences between genotypes in τDD, ρ was consistently more strongly correlated with the preceding than the succeeding α

    An Evolutionary Conserved Role for Anaplastic Lymphoma Kinase in Behavioral Responses to Ethanol

    Get PDF
    Anaplastic lymphoma kinase (Alk) is a gene expressed in the nervous system that encodes a receptor tyrosine kinase commonly known for its oncogenic function in various human cancers. We have determined that Alk is associated with altered behavioral responses to ethanol in the fruit fly Drosophila melanogaster, in mice, and in humans. Mutant flies containing transposon insertions in dAlk demonstrate increased resistance to the sedating effect of ethanol. Database analyses revealed that Alk expression levels in the brains of recombinant inbred mice are negatively correlated with ethanol-induced ataxia and ethanol consumption. We therefore tested Alk gene knockout mice and found that they sedate longer in response to high doses of ethanol and consume more ethanol than wild-type mice. Finally, sequencing of human ALK led to the discovery of four polymorphisms associated with a low level of response to ethanol, an intermediate phenotype that is predictive of future alcohol use disorders (AUDs). These results suggest that Alk plays an evolutionary conserved role in ethanol-related behaviors. Moreover, ALK may be a novel candidate gene conferring risk for AUDs as well as a potential target for pharmacological intervention

    Role for Circadian Clock Genes in Seasonal Timing: Testing the Bunning Hypothesis

    Get PDF
    A major question in chronobiology focuses around the “Bünning hypothesis” which implicates the circadian clock in photoperiodic (day-length) measurement and is supported in some systems (e.g. plants) but disputed in others. Here, we used the seasonally-regulated thermotolerance of Drosophila melanogaster to test the role of various clock genes in day-length measurement. In Drosophila, freezing temperatures induce reversible chill coma, a narcosis-like state. We have corroborated previous observations that wild-type flies developing under short photoperiods (winter-like) exhibit significantly shorter chill-coma recovery times (CCRt) than flies that were raised under long (summer-like) photoperiods. Here, we show that arrhythmic mutant strains, per01, tim01 and ClkJrk, as well as variants that speed up or slow down the circadian period, disrupt the photoperiodic component of CCRt. Our results support an underlying circadian function mediating seasonal daylength measurement and indicate that clock genes are tightly involved in photo- and thermo-periodic measurements

    SPINE20 recommendations 2021: spine care for people's health and prosperity

    Get PDF
    PURPOSE: The focus of SPINE20 is to develop evidence-based policy recommendations for the G20 countries to work with governments to reduce the burden of spine disease, and disability. METHODS: On September 17-18, 2021, SPINE20 held its annual meeting in Rome, Italy. Prior to the meeting, the SPINE20 created six proposed recommendations. These recommendations were uploaded to the SPINE20 website 10 days before the meeting and opened to the public for comments. The recommendations were discussed at the meeting allowing the participants to object and provide comments. RESULTS: In total, 27 societies endorsed the following recommendations. SPINE20 calls upon the G20 countries: (1) to expand telehealth for the access to spine care, especially in light of the current situation with COVID-19. (2) To adopt value-based interprofessional spine care as an approach to improve patient outcomes and reduce disability. (3) To facilitate access and invest in the development of a competent rehabilitation workforce to reduce the burden of disability related to spine disorders. (4) To adopt a strategy to promote daily physical activity and exercises among the elderly population to maintain an active and independent life with a healthy spine, particularly after COVID-19 pandemic. (5) To engage in capacity building with emerging countries and underserved communities for the benefit of spine patients. (6) To promote strategies to transfer evidence-based advances into patient benefit through effective implementation processes. CONCLUSIONS: SPINE20's initiatives will make governments and decision makers aware of efforts to reduce needless suffering from disabling spine pain through education that can be instituted across the globe

    Engineering nanoparticles for targeting rheumatoid arthritis: Past, present, and future trends

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by synovial joint inflammation and cartilage and bone tissue destruction. Although there exist some treatment strategies for RA, they are not completely safe and effective. Therefore, it is important to develop and test new drugs for RA that specifically target inflamed/swollen joints and simultaneously attenuate other possible damages to healthy tissues. Nanotechnology can be a good alternative to consider when envisioning precise medication for treating RA. Through the use of nanoparticles, it is possible to increase bioavailability and bioactivity of therapeutics and enable selective targeting to damaged joints. Herein, recent studies using nanoparticles for the treatment of RA, namely with liposomes, polymeric nanoparticles, dendrimers, and metallic nanoparticles, have been reviewed. These therapeutic strategies have shown great promise in improving the treatment over that by traditional drugs. The results of these studies confirm that feasibility of the use of nanoparticles is mainly due to their biocompatibility, low toxicity, controlled release, and selective drug delivery to inflamed tissues in animal RA models. Therefore, it is possible to claim that nanotechnology will, in the near future, play a crucial role in advanced treatments and patient-specific therapies for human diseases such as RA.Financial support under the ARTICULATE project (No. QREN-13/SI/2011-23189). This study was also funded by the Portuguese Foundation for Science and Technology (FCT) project OsteoCart (No. PTDC/CTM-BPC/115977/2009), as well as the European Union’s FP7 Programme under grant agreement no REGPOT-CT2012-316331-POLARIS. The FCT distinction attributed to J. M. O. under the Investigator FCT program (No. IF/00423/2012) is also greatly acknowledged. C. G. also wished to acknowledge FCT for supporting her research (No. SFRH/BPD/94277/2013)info:eu-repo/semantics/publishedVersio

    Circadian oscillator proteins across the kingdoms of life : Structural aspects 06 Biological Sciences 0601 Biochemistry and Cell Biology

    Get PDF
    Circadian oscillators are networks of biochemical feedback loops that generate 24-hour rhythms and control numerous biological processes in a range of organisms. These periodic rhythms are the result of a complex interplay of interactions among clock components. These components are specific to the organism but share molecular mechanisms that are similar across kingdoms. The elucidation of clock mechanisms in different kingdoms has recently started to attain the level of structural interpretation. A full understanding of these molecular processes requires detailed knowledge, not only of the biochemical and biophysical properties of clock proteins and their interactions, but also the three-dimensional structure of clockwork components. Posttranslational modifications (such as phosphorylation) and protein-protein interactions, have become a central focus of recent research, in particular the complex interactions mediated by the phosphorylation of clock proteins and the formation of multimeric protein complexes that regulate clock genes at transcriptional and translational levels. The three-dimensional structures for the cyanobacterial clock components are well understood, and progress is underway to comprehend the mechanistic details. However, structural recognition of the eukaryotic clock has just begun. This review serves as a primer as the clock communities move towards the exciting realm of structural biology
    corecore