398 research outputs found

    Best practice guidelines on logistics and quality assurance for pellet production

    Get PDF
    http://www.forestenergy.org/observe

    Global survey of star clusters in the Milky Way IV. 63 new open clusters detected by proper motions

    Full text link
    AIMS: In their 1st extension to the Milky Way Star Clusters (MWSC) survey, Schmeja et al. applied photometric filters to the 2MASS to find new cluster candidates that were subsequently confirmed or rejected by the MWSC pipeline. To further extend the MWSC census, we aimed at discovering new clusters by conducting an almost global search in proper motion catalogues as a starting point. METHODS: We first selected high-quality samples from the PPMXL and UCAC4 for comparison and verification of the proper motions. For 441 circular proper motion bins (radius 15 mas/yr) within ±\pm50 mas/yr, the sky outside a thin Galactic plane zone (∣b∣|b|<<5∘^{\circ}) was binned in small areas ('sky pixels') of 0.25×\times0.25 deg2^2. Sky pixels with enhanced numbers of stars with a certain common proper motion in both catalogues were considered as cluster candidates. After visual inspection of the sky images, we built an automated procedure that combined these representations of the sky for neighbouring proper motion subsamples after a background correction. RESULTS: About half of our 692 candidates overlapped with known clusters (46 globular and 68 open clusters in the Galaxy, about 150 known clusters of galaxies) or the Magellanic Clouds. About 10% of our candidates turned out to be 63 new open clusters confirmed by the MWSC pipeline. They occupy predominantly the two inner Galactic quadrants and have apparent sizes and numbers of high-probable members slightly larger than those of the typically small MWSC clusters, whereas their other parameters (ages, distances, tidal radii) fall in the typical ranges. As our search aimed at finding compact clusters, we did not find new very nearby (extended) clusters. (abridged)Comment: 14 pages, 14 figures, accepted for publication in Astronomy and Astrophysic

    Global survey of star clusters in the Milky Way II. The catalogue of basic parameters

    Full text link
    Although they are the main constituents of the Galactic disk population, for half of the open clusters in the Milky Way reported in the literature nothing is known except the raw position and an approximate size. The main goal of this study is to determine a full set of uniform spatial, structural, kinematic, and astrophysical parameters for as many known open clusters as possible. On the basis of stellar data from PPMXL and 2MASS, we used a dedicated data-processing pipeline to determine kinematic and photometric membership probabilities for stars in a cluster region. For an input list of 3784 targets from the literature, we confirm that 3006 are real objects, the vast majority of them are open clusters, but associations and globular clusters are also present. For each confirmed object we determined the exact position of the cluster centre, the apparent size, proper motion, distance, colour excess, and age. For about 1500 clusters, these basic astrophysical parameters have been determined for the first time. For the bulk of the clusters we also derived the tidal radius. We estimated additionally average radial velocities for more than 30% of the confirmed clusters. The present sample (called MWSC) reaches both the central parts of the Milky Way and its outer regions. It is almost complete up to 1.8 kpc from the Sun and also covers neighbouring spiral arms. However, for a small subset of the oldest open clusters (log⁡t≳9\log t \gtrsim 9) we found some evidence of incompleteness within about 1 kpc from the Sun.Comment: 8 pages, 5 figures, accepted for publication in Astronomy and Astrophysic

    Why Simple Stellar Population models do not reproduce the colours of Galactic open clusters

    Full text link
    (...) We search for an explanation of the disagreement between the observed integrated colours of 650 local Galactic clusters and the theoretical colours of present-day SSP models. We check the hypothesis that the systematic offsets between observed and theoretical colours, which are (B(B−-V)≈0.3V)\approx 0.3 and (J(J−-Ks)≈0.8K_s)\approx 0.8, are caused by neglecting the discrete nature of the underlying mass function. Using Monte Carlo simulations, we construct artificial clusters of coeval stars taken from a mass distribution defined by an Salpeter initial mass function (IMF) and compare them with corresponding "continuous-IMF" SSP models. If the discreteness of the IMF is taken into account, the model fits the observations perfectly and is able to explain naturally a number of red "outliers" observed in the empirical colour-age relation. We find that the \textit{systematic} offset between the continuous- and discrete-IMF colours reaches its maximum of about 0.5 in (B(B−-V)V) for a cluster mass Mc=102m⊙M_c=10^2 m_\odot at ages log⁥t≈7\log t\approx 7, and diminishes substantially but not completely to about one hundredth of a magnitude at log⁥t>7.9\log t >7.9 at cluster masses Mc>105m⊙M_c> 10^5 m_\odot. At younger ages, it is still present even in massive clusters, and for Mcâ©œ104m⊙M_c \leqslant 10^4 m_\odot it is larger than 0.1 mag in (B(B−-V)V). Only for very massive clusters (Mc>106m⊙M_c>10^6 m_\odot) with ages log⁥t<7.5\log t< 7.5 is the offset small (of the order of 0.04 mag) and smaller than the typical observational error of colours of extragalactic clusters.Comment: 4 pages, 3 figures, accepted for publication in Astronomy and Astrophysics Letters, revised version after language editing and with an additional reference to Cervino and Luridiana (2004

    Unmasking the Active Galactic Nucleus in PKS J2310-437

    Full text link
    PKS J2310-437 is an AGN with bright X-ray emission relative to its weak radio emission and optical continuum. It is believed that its jet lies far enough from the line of sight that it is not highly relativistically beamed. It thus provides an extreme test of AGN models. We present new observations aimed at refining the measurement of the source's properties. In optical photometry with the NTT we measure a central excess with relatively steep spectrum lying above the bright elliptical galaxy emission, and we associate the excess wholly or in part with the AGN. A new full-track radio observation with the ATCA finds that the core 8.64GHz emission has varied by about 20 per cent over 38 months, and improves the mapping of the weak jet. With Chandra we measure a well-constrained power-law spectral index for the X-ray core, uncontaminated by extended emission from the cluster environment, with a negligible level of intrinsic absorption. Weak X-ray emission from the resolved radio jet is also measured. Our analysis suggests that the optical continuum in this radio galaxy has varied by at least a factor of four over a timescale of about two years, something that should be testable with further observations. We conclude that the most likely explanation for the bright central X-ray emission is synchrotron radiation from high-energy electrons.Comment: 7 pages, 12 figure

    Global survey of star clusters in the Milky Way: III. 139 new open clusters at high Galactic latitudes

    Get PDF
    Context. An earlier analysis of the Milky Way Star Cluster (MWSC) catalogue revealed an apparent lack of old (t Ăą?€ 1 Gyr) open clusters in the solar neighbourhood (d Ăą?„ 1 kpc). Aims. To fill this gap we undertook a search for hitherto unknown star clusters, assuming that the missing old clusters reside at high Galactic latitudes | b | > 20°. Methods. We were looking for stellar density enhancements using a star count algorithm on the 2MASS point source catalogue. To increase the contrast between potential clusters and the field, we applied filters in colour-magnitude space according to typical colour-magnitude diagrams of nearby old open clusters. The subsequent comparison with lists of known objects allowed us to select thus far unknown cluster candidates. For verification they were processed with the standard pipeline used within the MWSC survey for computing cluster membership probabilities and for determining structural, kinematic, and astrophysical parameters. Results. In total we discovered 782 density enhancements, 524 of which were classified as real objects. Among them 139 are new open clusters with ages 8.3 < log (t [yr]) < 9.7, distances d< 3 kpc, and distances from the Galactic plane 0.3 <Z< 1 kpc. This new sample has increased the total number of known high latitude open clusters by about 150%. Nevertheless, we still observe a lack of older nearby clusters up to 1 kpc from the Sun. This volume is expected to still contain about 60 unknown clusters that probably escaped our detection algorithm, which fails to detect sparse overdensities with large angular size

    Detection of Cherenkov light from air showers with Geiger-APDs

    Full text link
    We have detected Cherenkov light from air showers with Geiger-mode APDs (G-APDs). G-APDs are novel semiconductor photon-detectors, which offer several advantages compared to conventional photomultiplier tubes in the field of ground-based gamma-ray astronomy. In a field test with the MAGIC telescope we have tested the efficiency of a G-APD / light catcher setup to detect Cherenkov light from air showers. We estimate a detection efficiency, which is 60% higher than the efficiency of a MAGIC camera pixel. Ambient temperature dark count rates of the tested G-APDs are below the rates of the night sky light background. According to these recent tests G-APDs promise a major progress in ground-based gamma-ray astronomy.Comment: 4 pages, 5 figures, to appear in the proceedings of the 30th International Cosmic Ray Conference, Merida, July 200

    Global survey of star clusters in the Milky Way I. The pipeline and fundamental parameters in the second quadrant

    Full text link
    Aims: On the basis of the PPMXL star catalogue we performed a survey of star clusters in the second quadrant of the Milky Way. Methods: From the PPMXL catalogue of positions and proper motions we took the subset of stars with near-infrared photometry from 2MASS and added the remaining 2MASS stars without proper motions (called 2MAst, i.e. 2MASS with astrometry). We developed a data-processing pipeline including interactive human control of a standardised set of multi-dimensional diagrams to determine kinematic and photometric membership probabilities for stars in a cluster region. The pipeline simultaneously produced the astrophysical parameters of a cluster. From literature we compiled a target list of presently known open and globular clusters, cluster candidates, associations, and moving groups. From established member stars we derived spatial parameters (coordinates of centres and radii of the main morphological parts of clusters) and cluster kinematics (average proper motions and sometimes radial velocities). For distance, reddening, and age determination we used specific sets of theoretical isochrones. Tidal parameters were obtained by a fit of three-parameter King profiles to the observed density distributions of members. Results: We investigated all 871 objects in the 2nd Galactic quadrant, of which we successfully treated 642 open clusters, 2 globular clusters, and 8 stellar associations. The remaining 219 objects (24%) were recognised by us to be nonexistent clusters, duplicate entries, or clusters too faint for 2MAst. We found that our sample is complete in the 2nd quadrant up to a distance of 2 kpc, where the average surface density is 94 clusters per kpc2^{2}. Compared with literature values we found good agreement in spatial and kinematic data, as well as for optical distances and reddening. Small, but systematic offsets were detected in the age determination.Comment: published in Astronomy and Astrophysics, 10 pages, 7 figures (plus 3 pages of appendices incl. 2 more figures), catalogues will be available at the CDS, all the machine-readable online data described in appendices A, B, and C are also available at: http://www.aip.de/People/rdscholz/kharchenko_etal_2012

    Predicting delay factors when chipping wood at forest roadside landings

    Get PDF
    Chipping of bulky biomass assortments at roadside landings is a common and costly step in the biomass-to-energy supply chain. This operation normally involves one chipping unit and one or several transport trucks working together for simultaneous chipping and chip transport to a terminal or end user. Reducing the delay factors in these operations is a relevant ambition for lowering supply costs. A method to estimate organizational delay based on: (1) the capacity ratio between the transport and the chipper, (2) the use of buffer storage, and (3) the number of transport units involved is suggested here. Other delays will also be present, and some of these may relate to the working conditions at the landing. A method to set a landing functionality index based on characteristics of the forest landing is also suggested. A total of 14 roadside chipping operations were assessed and the operators were interviewed to address the impact of machinery configuration and landing characteristics on machine utilization. At most sites, the chipper was the more productive part, and the chipper utilization was to a large extent limited by organizational delay. Still the utilization of the transport units varied between 37 and 97%, of which some 36% of the variation was explained by the landing functionality index. Knowledge from the work presented here should be a good starting point for improving biomass supply planning and supply chain configuration.acceptedVersio

    Trigonometric parallaxes of ten ultracool subdwarfs

    Full text link
    We measured absolute trigonometric parallaxes and proper motions with respect to many background galaxies for a sample of ten ultracool subdwarfs. The observations were taken in the H-band with the OMEGA2000 camera at the 3.5m-telescope on Calar Alto, Spain during a time period of 3.5 years. For the first time, the reduction of the astrometric measurements was carried out directly with respect to background galaxies. We obtained absolute parallaxes with mean errors ranging between 1 and 3 mas. With six completely new parallaxes we more than doubled the number of benchmark ultracool (>sdM7) subdwarfs. Six stars in the M_{K_s} vs. J-K_s diagram fit perfectly to model subdwarf sequences from M7 to L4 with [M/H] between -1.0 and -1.5, whereas 4 are consistent with a moderately low metallicity ([M/H]=-0.5) from M7 to T6. All but one of our objects have large tangential velocities between 200 and 320 km/s typical of the Galactic halo population. Our results are in good agreement with recent independent measurements for three of our targets and confirm the previously measured parallax and absolute magnitude M_{K_s} of the nearest and coolest (T-type) subdwarf 2MASS 0937+29 with higher accuracy. For all targets, we also obtained infrared J,H,K_s photometry at a level of a few milli-magnitudes relative to 2MASS standards.Comment: Letter 4 pages 1 figure. accepted by Astronomy and Astrophysic
    • 

    corecore