35 research outputs found

    The \u27Ideal\u27 Climate Change Ph.D. Program

    Get PDF
    The training of the next generation of climate-change researchers is of utmost importance as climate change and its associated impacts take on increasing local, regional, and global relevance. This report seeks to address this issue by highlighting aspects of a successful climate-change Ph.D. program; a program which seeks to balance traditional disciplinary training with exposure to the broader, interdisciplinary climate-change community

    Aquatic community response to volcanic eruptions on the Ecuadorian Andean flank: evidence from the palaeoecological record

    Get PDF
    Aquatic ecosystems in the tropical Andes are under increasing pressure from human modification of the landscape (deforestation and dams) and climatic change (increase of extreme events and 1.5 °C on average temperatures are projected for AD 2100). However, the resilience of these ecosystems to perturbations is poorly understood. Here we use a multi-proxy palaeoecological approach to assess the response of aquatic ecosystems to a major mechanism for natural disturbance, volcanic ash deposition. Specifically, we present data from two Neotropical lakes located on the eastern Andean flank of Ecuador. Laguna Pindo (1°27.132′S–78°04.847′W) is a tectonically formed closed basin surrounded by a dense mid-elevation forest, whereas Laguna Baños (0°19.328′S–78°09.175′W) is a glacially formed lake with an inflow and outflow in high Andean Páramo grasslands. In each lake we examined the dynamics of chironomids and other aquatic and semi-aquatic organisms to explore the effect of thick (> 5 cm) volcanic deposits on the aquatic communities in these two systems with different catchment features. In both lakes past volcanic ash deposition was evident from four large tephras dated to c.850 cal year BP (Pindo), and 4600, 3600 and 1500 cal year BP (Baños). Examination of the chironomid and aquatic assemblages before and after the ash depositions revealed no shift in composition at Pindo, but a major change at Baños occurred after the last event around 1500 cal year BP. Chironomids at Baños changed from an assemblage dominated by Pseudochironomus and Polypedilum nubifer-type to Cricotopus/Paratrichocladius type-II, and such a dominance lasted for approximately 380 years. We suggest that, despite potential changes in the water chemistry, the major effect on the chironomid community resulted from the thickness of the tephra being deposited, which acted to shallow the water body beyond a depth threshold. Changes in the aquatic flora and fauna at the base of the trophic chain can promote cascade effects that may deteriorate the ecosystem, especially when already influenced by human activities, such as deforestation and dams, which is frequent in the high Andes

    20th Century Atmospheric Deposition and Acidification Trends in Lakes of the Sierra Nevada, California, USA

    Full text link
    We investigated multiple lines of evidence to determine if observed and paleo-reconstructed changes in acid neutralizing capacity (ANC) in Sierra Nevada lakes were the result of changes in 20th century atmospheric deposition. Spheroidal carbonaceous particles (SCPs) (indicator of anthropogenic atmospheric deposition) and biogenic silica and δ(13)C (productivity proxies) in lake sediments, nitrogen and sulfur emission inventories, climate variables, and long-term hydrochemistry records were compared to reconstructed ANC trends in Moat Lake. The initial decline in ANC at Moat Lake occurred between 1920 and 1930, when hydrogen ion deposition was approximately 74 eq ha(-1) yr(-1), and ANC recovered between 1970 and 2005. Reconstructed ANC in Moat Lake was negatively correlated with SCPs and sulfur dioxide emissions (p = 0.031 and p = 0.009). Reconstructed ANC patterns were not correlated with climate, productivity, or nitrogen oxide emissions. Late 20th century recovery of ANC at Moat Lake is supported by increasing ANC and decreasing sulfate in Emerald Lake between 1983 and 2011 (p < 0.0001). We conclude that ANC depletion at Moat and Emerald lakes was principally caused by acid deposition, and recovery in ANC after 1970 can be attributed to the United States Clean Air Act

    The distribution and abundance of chironomids in high-latitude Eurasian lakes with respect to temperature and continentality: development and application of new chironomid-based climate-inference models in northern Russia

    Get PDF
    The large landmass of northern Russia has the potential to influence global climate through amplification of climate change. Reconstructing the climate in this region over millennial timescales is crucial for understanding the processes that affect the climate system. Chironomids, preserved in lake sediments, have the potential to produce high resolution, low error, quantitative summer air temperature reconstructions. Canonical correspondence analysis (CCA) of modern surface sediments from 100 high-latitude lakes, located in northern European Russia to central Siberia, showed chironomid distribution was primarily driven by July air temperatures. The strong relationship enabled the development of chironomid-inference model based on 81 lake and 89 taxa to reconstruct July air temperature. Analysis of a range of chironomid-inferred temperature model suggest the best to be a two component weighted averaging and partial least squares (WA-PLS model) with r2jack = 0.92 and RMSEP = 0.89°C. Comparison of species responses to July temperature with the Norwegian training set showed the temperature optima of individual species was 1-3°C in the Russian data regardless of modelling technique. This suggests that chironomid-based inference models should only be applied to sediment cores collected within the geographic source area of the training set. The differing responses between the Norwegian and Russian faunas led to the development of a 149 lake, 120 taxa chironomid-continentality inference model. The 2-component WA-PLS model was the minimal adequate model with r2jack = 0.73 and RMSEP = 9.9. Recent warming in the Arctic has been spatial and seasonal heterogeneous; in many areas warming is more pronounced in the spring and autumn leading to a lengthening of the summer, while summer temperatures have remained relatively stable. A continentality model has the potential to detect these seasonal changes in climate. The Russian inference model also improves the representation of a number of taxa, such as Corynocera oliveri-type, Constempellina and Paracladius, which frequently occur in subfossil assemblages from arctic Russian lakes, but are poorly represented in European training sets. These are cold-adapted taxa and their absence from the training sets could lead to overestimations of July temperatures in fossil samples where these taxa form a major component (for example see Andreev et al. 2005). Comparison of reconstructed July air temperatures and continentality indices from a tundra lake in north-east European Russia showed close agreement with local instrumental records over the past 70 years and suggests the models may produce reliable estimates of past climate

    Temperature change as a driver of spatial patterns and long-term trends in chironomid (Insecta: Diptera) diversity

    No full text
    © 2019 John Wiley & Sons Ltd Anthropogenic activities have led to a global decline in biodiversity, and monitoring studies indicate that both insect communities and wetland ecosystems are particularly affected. However, there is a need for long-term data (over centennial or millennial timescales) to better understand natural community dynamics and the processes that govern the observed trends. Chironomids (Insecta: Diptera: Chironomidae) are often the most abundant insects in lake ecosystems, sensitive to environmental change, and, because their larval exoskeleton head capsules preserve well in lake sediments, they provide a unique record of insect community dynamics through time. Here, we provide the results of a metadata analysis of chironomid diversity across a range of spatial and temporal scales. First, we analyse spatial trends in chironomid diversity using Northern Hemispheric data sets overall consisting of 837 lakes. Our results indicate that in most of our data sets, summer temperature (Tjul) is strongly associated with spatial trends in modern-day chironomid diversity. We observe a strong increase in chironomid alpha diversity with increasing Tjul in regions with present-day Tjul between 2.5 and 14°C. In some areas with Tjul > 14°C, chironomid diversity stabilizes or declines. Second, we demonstrate that the direction and amplitude of change in alpha diversity in a compilation of subfossil chironomid records spanning the last glacial–interglacial transition (~15,000–11,000 years ago) are similar to those observed in our modern data. A compilation of Holocene records shows that during phases when the amplitude of temperature change was small, site-specific factors had a greater influence on the chironomid fauna obscuring the chironomid diversity–temperature relationship. Our results imply expected overall chironomid diversity increases in colder regions such as the Arctic under sustained global warming, but with complex and not necessarily predictable responses for individual sites

    Temperature change as a driver of spatial patterns and long-term trends in chironomid (Insecta: Diptera) diversity

    No full text
    © 2019 John Wiley & Sons Ltd Anthropogenic activities have led to a global decline in biodiversity, and monitoring studies indicate that both insect communities and wetland ecosystems are particularly affected. However, there is a need for long-term data (over centennial or millennial timescales) to better understand natural community dynamics and the processes that govern the observed trends. Chironomids (Insecta: Diptera: Chironomidae) are often the most abundant insects in lake ecosystems, sensitive to environmental change, and, because their larval exoskeleton head capsules preserve well in lake sediments, they provide a unique record of insect community dynamics through time. Here, we provide the results of a metadata analysis of chironomid diversity across a range of spatial and temporal scales. First, we analyse spatial trends in chironomid diversity using Northern Hemispheric data sets overall consisting of 837 lakes. Our results indicate that in most of our data sets, summer temperature (Tjul) is strongly associated with spatial trends in modern-day chironomid diversity. We observe a strong increase in chironomid alpha diversity with increasing Tjul in regions with present-day Tjul between 2.5 and 14°C. In some areas with Tjul > 14°C, chironomid diversity stabilizes or declines. Second, we demonstrate that the direction and amplitude of change in alpha diversity in a compilation of subfossil chironomid records spanning the last glacial–interglacial transition (~15,000–11,000 years ago) are similar to those observed in our modern data. A compilation of Holocene records shows that during phases when the amplitude of temperature change was small, site-specific factors had a greater influence on the chironomid fauna obscuring the chironomid diversity–temperature relationship. Our results imply expected overall chironomid diversity increases in colder regions such as the Arctic under sustained global warming, but with complex and not necessarily predictable responses for individual sites
    corecore