454 research outputs found

    Establishment and metabolic analysis of a model microbial community for understanding trophic and electron accepting interactions of subsurface anaerobic environments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Communities of microorganisms control the rates of key biogeochemical cycles, and are important for biotechnology, bioremediation, and industrial microbiological processes. For this reason, we constructed a model microbial community comprised of three species dependent on trophic interactions. The three species microbial community was comprised of <it>Clostridium cellulolyticum</it>, <it>Desulfovibrio vulgaris </it>Hildenborough, and <it>Geobacter sulfurreducens </it>and was grown under continuous culture conditions. Cellobiose served as the carbon and energy source for <it>C. cellulolyticum</it>, whereas <it>D. vulgaris </it>and <it>G. sulfurreducens </it>derived carbon and energy from the metabolic products of cellobiose fermentation and were provided with sulfate and fumarate respectively as electron acceptors.</p> <p>Results</p> <p>qPCR monitoring of the culture revealed <it>C. cellulolyticum </it>to be dominant as expected and confirmed the presence of <it>D. vulgaris </it>and <it>G. sulfurreducens</it>. Proposed metabolic modeling of carbon and electron flow of the three-species community indicated that the growth of <it>C. cellulolyticum </it>and <it>D. vulgaris </it>were electron donor limited whereas <it>G. sulfurreducens </it>was electron acceptor limited.</p> <p>Conclusions</p> <p>The results demonstrate that <it>C. cellulolyticum</it>, <it>D. vulgaris</it>, and <it>G. sulfurreducens </it>can be grown in coculture in a continuous culture system in which <it>D. vulgaris </it>and <it>G. sulfurreducens </it>are dependent upon the metabolic byproducts of <it>C. cellulolyticum </it>for nutrients. This represents a step towards developing a tractable model ecosystem comprised of members representing the functional groups of a trophic network.</p

    Phylogeography and post-glacial dynamics in the clonal-sexual orchid Cypripedium calceolus L.

    Get PDF
    Aim We investigated the phylogeographical history of a clonal-sexual orchid, to test the hypothesis that current patterns of genetic diversity and differentiation retain the traces of climatic fluctuations and of the species reproductive system. Location Europe, Siberia and Russian Far East. Taxon Cypripedium calceolus L. (Orchidaceae). Methods Samples (>900, from 56 locations) were genotyped at 11 nuclear microsatellite loci and plastid sequences were obtained for a subset of them. Analysis of genetic structure and approximate Bayesian computations were performed. Species distribution modelling was used to explore the effects of past climatic fluctuations on the species range. Results Analysis of genetic diversity reveals high heterozygosity and allele diversity, with no geographical trend. Three genetic clusters are identified with extant gene pools derived from ancestral demes in glacial refugia. Siberian populations exhibit different plastid haplotypes, supporting an early divergence for the Asian gene pool. Demographic results based on genetic data are compatible with an admixture event explaining differentiation in Estonia and Romania and they are consistent with past climatic dynamics inferred through species distribution modelling. Current population differentiation does not follow isolation by distance model and is compatible with a model of isolation by colonization. Main conclusions The genetic differentiation observed today in C. calceolus preserves the signature of climatic fluctuations in the historical distribution range of the species. Our findings support the central role of clonal reproduction in the reducing loss of diversity through genetic drift. The dynamics of the clonal-sexual reproduction are responsible for the persistence of ancestral variation and stability during glacial periods and post-glacial expansion.Peer reviewe

    Development of a Model, Metal-reducing Microbial Community for a System Biology Level Assessment of Desulfovibrio vulgaris as part of a Community

    Get PDF
    One of the largest experimental gaps is between the simplicity of pure cultures and the complexity of open environmental systems, particularly in metal-contaminated areas. These microbial communities form ecosystem foundations, drive biogeochemical processes, and are relevant for biotechnology and bioremediation. A model, metal-reducing microbial community was constructed as either syntrophic or competitive to study microbial cell to cell interactions, cell signaling and competition for resources. The microbial community was comprised of the metal-reducing Desulfovibrio vulgaris Hildenborough and Geobacter sulfurreducens PCA. Additionally, Methanococcus maripaludis S2 was added to study complete carbon reduction and maintain a low hydrogen partial pressure for syntrophism to occur. Further, considerable work has been published on D. vulgaris and the D. vulgaris/ Mc. maripaludis co-culture both with and without stress. We are extending this work by conducting the same stress conditions on the model community. Additionally, this comprehensive investigation includes physiological and metabolic analyses as well as specially designed mRNA microarrays with the genes for all three organisms on one slide so as to follow gene expression changes in the various cultivation conditions as well as being comparable to the co- and individual cultures. Further, state-of -the-art comprehensive AMT tag proteomics allows for these comparisons at the protein level for a systems biology assessment of a model, metal-reducing microbial community. Preliminary data revealed that lactate oxidation by D. vulgaris was sufficient to support both G. sulfurreducens and M. maripaludis via the excretion of H2 and acetate. Fumarate was utilized by G. sulfurreducens and reduced to succinate since neither of the other two organisms can reduce fumarate. Methane was quantified, suggesting acetate and H2 concentrations were sufficient for M. maripaludis. Steady state community cultivation will allow for a comprehensive, system biology level analysis of a metal-reducing microbial community

    Microbial Community Dynamics of Lactate Enriched Hanford Groundwaters

    Full text link
    The Department of Energy site at Hanford, WA, has been historically impacted by U and Cr from the nuclear weapons industry. In an attempt to stimulate microbial remediation of these metals, in-situ lactate enrichment experiments are ongoing. In order to bridge the gap from the laboratory to the field, we inoculated triplicate anaerobic, continuous-flow glass reactors with groundwater collected from well Hanford 100-H in order to obtain a stable, enriched community while selecting for metal-reducing bacteria. Each reactor was fed from a single carboy containing defined media with 30 mM lactate at a rate of 0.223 ml/min under continuous nitrogen flow at 9 ml/min. Cell counts, organic acids, gDNA (for qPCR and pyrosequencing) and gases were sampled during the experiment. Cell counts remained low (less than 1x107 cells/ml) during the first two weeks of the experiment, but by day 20, had reached a density greater than 1x108 cells/ml. Metabolite analysis showed a decrease in the lactate concentrations over time. Pyruvate concentrations ranged from 20-40 uM the first week of the experiment then was undetectable after day 10. Likewise, formate appeared in the reactors during the first week with concentrations of 1.48-1.65 mM at day 7 then the concentrations decreased to 0.69-0.95 on day 10 and were undetectable on day 15. Acetate was present in low amounts on day 3 (0.15-0.33 mM) and steadily increased to 3.35-5.22 mM over time. Similarly, carbon dioxide was present in low concentrations early on and increased to 0.28-0.35 mM as the experiment progressed. We also were able to detect low amounts of methane (10-20 uM) during the first week of the experiment, but by day 10 the methane was undetectable. From these results and pyrosequencing analysis, we conclude that a shift in the microbial community dynamics occurred over time to eventually form a stable and enriched microbial community. Comprehensive investigations such as these allow for the examination of not only which nutrient source will accelerate site remediation, but also provide insight to evaluate remediation strategies through which enriched community members are important for bioremediation

    A Microbe Associated with Sleep Revealed by a Novel Systems Genetic Analysis of the Microbiome in Collaborative Cross Mice.

    Get PDF
    The microbiome influences health and disease through complex networks of host genetics, genomics, microbes, and environment. Identifying the mechanisms of these interactions has remained challenging. Systems genetics in laboratory mice (Mus musculus) enables data-driven discovery of biological network components and mechanisms of host-microbial interactions underlying disease phenotypes. To examine the interplay among the whole host genome, transcriptome, and microbiome, we mapped QTL and correlated the abundance of cecal messenger RNA, luminal microflora, physiology, and behavior in a highly diverse Collaborative Cross breeding population. One such relationship, regulated by a variant on chromosome 7, was the association of Odoribacter (Bacteroidales) abundance and sleep phenotypes. In a test of this association in the BKS.Cg-Dock7m +/+ Leprdb/J mouse model of obesity and diabetes, known to have abnormal sleep and colonization by Odoribacter, treatment with antibiotics altered sleep in a genotype-dependent fashion. The many other relationships extracted from this study can be used to interrogate other diseases, microbes, and mechanisms

    Diversity and strength of internal outward-oriented promoters in group IIC-attC introns

    Get PDF
    Integrons are genetic elements that incorporate mobile gene cassettes by site-specific recombination and express them as an operon from a promoter (Pc) located upstream of the cassette insertion site. Most gene cassettes found in integrons contain only one gene followed by an attC recombination site. We have recently shown that a specific lineage of group IIC introns, named group IIC-attC introns, inserts into the bottom strand sequence of attC sites. Here, we show that S.ma.I2, a group IIC-attC intron inserted in an integron cassette array of Serratia marcescens, impedes transcription from Pc while allowing expression of the following antibiotic resistance cassette using an internal outward-oriented promoter (Pout). Bioinformatic analyses indicate that one or two putative Pout, which have sequence similarities with the Escherichia coli consensus promoters, are conserved in most group IIC-attC intron sequences. We show that Pout with different versions of the −35 and −10 sequences are functionally active in expressing a promoterless chloramphenicol acetyltransferase (cat) reporter gene in E. coli. Pout in group IIC-attC introns may therefore play a role in the expression of one or more gene cassettes whose transcription from Pc would otherwise be impeded by insertion of the intron
    corecore