115 research outputs found
Massive Cosmologies
We explore the cosmological solutions of a recently proposed extension of
General Relativity with a Lorentz-invariant mass term. We show that the same
constraint that removes the Boulware-Deser ghost in this theory also prohibits
the existence of homogeneous and isotropic cosmological solutions.
Nevertheless, within domains of the size of inverse graviton mass we find
approximately homogeneous and isotropic solutions that can well describe the
past and present of the Universe. At energy densities above a certain crossover
value, these solutions approximate the standard FRW evolution with great
accuracy. As the Universe evolves and density drops below the crossover value
the inhomogeneities become more and more pronounced. In the low density regime
each domain of the size of the inverse graviton mass has essentially non-FRW
cosmology. This scenario imposes an upper bound on the graviton mass, which we
roughly estimate to be an order of magnitude below the present-day value of the
Hubble parameter. The bound becomes especially restrictive if one utilizes an
exact self-accelerated solution that this theory offers. Although the above are
robust predictions of massive gravity with an explicit mass term, we point out
that if the mass parameter emerges from some additional scalar field
condensation, the constraint no longer forbids the homogeneous and isotropic
cosmologies. In the latter case, there will exist an extra light scalar field
at cosmological scales, which is screened by the Vainshtein mechanism at
shorter distances.Comment: 21 page
Charming CP Violation and Dipole Operators from RS Flavor Anarchy
Recently the LHCb collaboration reported evidence for direct CP violation in
charm decays. The value is sufficiently large that either substantially
enhanced Standard Model contributions or non-Standard Model physics is required
to explain it. In the latter case only a limited number of possibilities would
be consistent with other existing flavor-changing constraints. We show that
warped extra dimensional models that explain the quark spectrum through flavor
anarchy can naturally give rise to contributions of the size required to
explain the the LHCb result. The D meson asymmetry arises through a sizable
CP-violating contribution to a chromomagnetic dipole operator. This happens
naturally without introducing inconsistencies with existing constraints in the
up quark sector. We discuss some subtleties in the loop calculation that are
similar to those in Higgs to \gamma\gamma. Loop-induced dipole operators in
warped scenarios and their composite analogs exhibit non-trivial dependence on
the Higgs profile, with the contributions monotonically decreasing when the
Higgs is pushed away from the IR brane. We show that the size of the dipole
operator quickly saturates as the Higgs profile approaches the IR brane,
implying small dependence on the precise details of the Higgs profile when it
is quasi IR localized. We also explain why the calculation of the coefficient
of the lowest dimension 5D operator is guaranteed to be finite. This is true
not only in the charm sector but also with other radiative processes such as
electric dipole moments, b to s\gamma, \epsilon'/\epsilon_K and \mu\ to
e\gamma. We furthermore discuss the interpretation of this contribution within
the framework of partial compositeness in four dimensions and highlight some
qualitative differences between the generic result of composite models and that
obtained for dynamics that reproduces the warped scenario.Comment: 14 page
A consistent picture for large penguins in D -> pi+ pi-, K+ K-
A long-standing puzzle in charm physics is the large difference between the
D0 -> K+ K- and D0 -> pi+ pi- decay rates. Recently, the LHCb and CDF
collaborations reported a surprisingly large difference between the direct CP
asymmetries, Delta A_CP, in these two modes. We show that the two puzzles are
naturally related in the Standard Model via s- and d-quark "penguin
contractions". Their sum gives rise to Delta A_CP, while their difference
contributes to the two branching ratios with opposite sign. Assuming nominal
SU(3) breaking, a U-spin fit to the D0 -> K+ pi-, pi+ K-, pi+ pi-, K+ K- decay
rates yields large penguin contractions that naturally explain Delta A_CP.
Expectations for the individual CP asymmetries are also discussed.Comment: 24 pages, 8 figure
The UTfit Collaboration Average of D meson mixing data: Spring 2012
We derive constraints on the parameters , and
that describe meson mixing using all available data, allowing
for CP violation. We also provide posterior distributions and predictions for
observable parameters appearing in physics.Comment: 5 pages, 3 figure
Nonlinear Dynamics of 3D Massive Gravity
We explore the nonlinear classical dynamics of the three-dimensional theory
of "New Massive Gravity" proposed by Bergshoeff, Hohm and Townsend. We find
that the theory passes remarkably highly nontrivial consistency checks at the
nonlinear level. In particular, we show that: (1) In the decoupling limit of
the theory, the interactions of the helicity-0 mode are described by a single
cubic term -- the so-called cubic Galileon -- previously found in the context
of the DGP model and in certain 4D massive gravities. (2) The conformal mode of
the metric coincides with the helicity-0 mode in the decoupling limit. Away
from this limit the nonlinear dynamics of the former is described by a certain
generalization of Galileon interactions, which like the Galileons themselves
have a well-posed Cauchy problem. (3) We give a non-perturbative argument based
on the presence of additional symmetries that the full theory does not lead to
any extra degrees of freedom, suggesting that a 3D analog of the 4D
Boulware-Deser ghost is not present in this theory. Last but not least, we
generalize "New Massive Gravity" and construct a class of 3D cubic order
massive models that retain the above properties.Comment: 21 page
Semiclassics, Goldstone bosons and CFT data
Hellerman et al. (arXiv:1505.01537) have shown that in a generic CFT the spectrum of operators carrying a large U(1) charge can be analyzed semiclassically in an expansion in inverse powers of the charge. The key is the operator state correspondence by which such operators are associated with a finite density superfluid phase for the theory quantized on the cylinder. The dynamics is dominated by the corresponding Goldstone hydrodynamic mode and the derivative expansion coincides with the inverse charge expansion. We illustrate and further clarify this situation by first considering simple quantum mechanical analogues. We then systematize the approach by employing the coset construction for non-linearly realized space-time symmetries. Focussing on CFT3 we illustrate the case of higher rank and non-abelian groups and the computation of higher point functions. Three point function coefficients turn out to satisfy universal scaling laws and correlations as the charge and spin are varied
Relaxing the cosmological constant: a proof of concept
We propose a technically natural scenario whereby an initially large cosmological constant (c.c.) is relaxed down to the observed value due to the dynamics of a scalar evolving on a very shallow potential. The model crucially relies on a sector that violates the null energy condition (NEC) and gets activated only when the Hubble rate becomes sufficiently small — of the order of the present one. As a result of NEC violation, this low-energy universe evolves into inflation, followed by reheating and the standard Big Bang cosmology. The symmetries of the theory force the c.c. to be the same before and after the NEC-violating phase, so that a late-time observer sees an effective c.c. of the correct magnitude. Importantly, our model allows neither for eternal inflation nor for a set of possible values of dark energy, the latter fixed by the parameters of the theory
Resonant decay of gravitational waves into dark energy
We study the decay of gravitational waves into dark energy fluctuations \u3c0, taking into account the large occupation numbers. We describe dark energy using the effective field theory approach, in the context of generalized scalar-tensor theories. When the m33 (cubic Horndeski) and 3c m42 (beyond Horndeski) operators are present, the gravitational wave acts as a classical background for \u3c0 and modifies its dynamics. In particular, \u3c0 fluctuations are described by a Mathieu equation and feature instability bands that grow exponentially. Focusing on the regime of small gravitational-wave amplitude, corresponding to narrow resonance, we calculate analytically the produced \u3c0, its energy and the change of the gravitational-wave signal. The resonance is affected by \u3c0 self-interactions in a way that we cannot describe analytically. This effect is very relevant for the operator m33 and it limits the instability. In the case of the 3c m42 operator self-interactions can be neglected, at least in some regimes. The modification of the gravitational-wave signal is observable for 3
7 10-20 64 \u3b1H 64 10-17 with a LIGO/Virgo-like interferometer and for 10-16 64 \u3b1H 64 10-10 with a LISA-like one
Exploring Attitudes Toward “Sugar Relationships” Across 87 Countries: A Global Perspective on Exchanges of Resources for Sex and Companionship
The current study investigates attitudes toward one form of sex for resources: the so-called sugar relationships, which often involve exchanges of resources for sex and/or companionship. The present study examined associations among attitudes toward sugar relationships and relevant variables (e.g., sex, sociosexuality, gender inequality, parasitic exposure) in 69,924 participants across 87 countries. Two self-report measures of Acceptance of Sugar Relationships (ASR) developed for younger companion providers (ASR-YWMS) and older resource providers (ASR-OMWS) were translated into 37 languages. We tested cross-sex and cross-linguistic construct equivalence, cross-cultural invariance in sex differences, and the importance of the hypothetical predictors of ASR. Both measures showed adequate psychometric properties in all languages (except the Persian version of ASR-YWMS). Results partially supported our hypotheses and were consistent with previous theoretical considerations and empirical evidence on human mating. For example, at the individual level, sociosexual orientation, traditional gender roles, and pathogen prevalence were significant predictors of both ASR-YWMS and ASR-OMWS. At the country level, gender inequality and parasite stress positively predicted the ASR-YWMS. However, being a woman negatively predicted the ASR-OMWS, but positively predicted the ASR-YWMS. At country-level, ingroup favoritism and parasite stress positively predicted the ASR-OMWS. Furthermore, significant cross-subregional differences were found in the openness to sugar relationships (both ASR-YWMS and ASR-OMWS scores) across subregions. Finally, significant differences were found between ASR-YWMS and ASR-OMWS when compared in each subregion. The ASR-YWMS was significantly higher than the ASR-OMWS in all subregions, except for Northern Africa and Western Asia
- …
