733 research outputs found
Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings
A one-dimensional dielectric grating, based on a simple geometry, is proposed
and investigated to enhance light absorption in a monolayer graphene exploiting
guided mode resonances. Numerical findings reveal that the optimized
configuration is able to absorb up to 60% of the impinging light at normal
incidence for both TE and TM polarizations resulting in a theoretical
enhancement factor of about 26 with respect to the monolayer graphene
absorption (about 2.3%). Experimental results confirm this behaviour showing
CVD graphene absorbance peaks up to about 40% over narrow bands of few
nanometers. The simple and flexible design paves the way for the realization of
innovative, scalable and easy-to-fabricate graphene-based optical absorbers
Graphene-based perfect optical absorbers harnessing guided mode resonances
We numerically and experimentally investigate graphene-based optical
absorbers that exploit guided mode resonances (GMRs) achieving perfect
absorption over a bandwidth of few nanometers (over the visible and
near-infrared ranges) with a 40-fold increase of the monolayer graphene
absorption. We analyze the influence of the geometrical parameters on the
absorption rate and the angular response for oblique incidence. Finally, we
experimentally verify the theoretical predictions in a one-dimensional,
dielectric grating and placing it near either a metallic or a dielectric
mirror
Circumstantial Evidence for a Critical Behavior in Peripheral Au + Au Collisions at 35 MeV/nucleon
The fragmentation resulting from peripheral Au + Au collisions at an incident
energy of E = 35 MeV/nucleon is investigated. A power-law charge distribution,
with , and an intermittency signal are observed
for events selected in the region of the Campi scatter plot where "critical"
behavior is expected.Comment: 11 pages, RevTex file, 4 postscript figures available upon request
from [email protected]
Breakup Density in Spectator Fragmentation
Proton-proton correlations and correlations of protons, deuterons and tritons
with alpha particles from spectator decays following 197Au + 197Au collisions
at 1000 MeV per nucleon have been measured with two highly efficient detector
hodoscopes. The constructed correlation functions, interpreted within the
approximation of a simultaneous volume decay, indicate a moderate expansion and
low breakup densities, similar to assumptions made in statistical
multifragmentation models.
PACS numbers: 25.70.Pq, 21.65.+f, 25.70.Mn, 25.75.GzComment: 11 pages, LaTeX with 3 included figures; Also available from
http://www-kp3.gsi.de/www/kp3/aladin_publications.htm
Active microcavity and coupled cavities in one-dimensional photonic crystal
The propagation of light in one-dimensional SiO2-TiO2 coupled cavity photonic crystal is investigated. In particular the potential application in light amplification is proposed considering the small group velocity that characterizes the propagation at the edge of the resonance band due to the defects. Then, by means of a transfer-matrix method and a mode matching method code, an estimation of the photon lifetime and of the field intensity in a three-coupled cavity-photonic crystal is reported comparing it with those pertaining to a microcavity photonic crystal. This calculation allows us to underline the role of the light–matter interaction time with respect to that of the number of the active medium layers in the optical amplification
Temperatures of Exploding Nuclei
Breakup temperatures in central collisions of 197Au + 197Au at bombarding
energies E/A = 50 to 200 MeV were determined with two methods. Isotope
temperatures, deduced from double ratios of hydrogen, helium, and lithium
isotopic yields, increase monotonically with bombarding energy from 5 MeV to 12
MeV, in qualitative agreement with a scenario of chemical freeze-out after
adiabatic expansion. Excited-state temperatures, derived from yield ratios of
states in 4He, 5Li, 6Li, and 8Be, are about 5 MeV, independent of the
projectile energy, and seem to reflect the internal temperature of fragments at
their final separation from the system.
PACS numbers: 25.70.Mn, 25.70.Pq, 25.75.-qComment: 10 pages, RevTeX with 4 included figures; Also available from
http://www-kp3.gsi.de/www/kp3/aladin_publications.htm
Thermal and Chemical Freeze-out in Spectator Fragmentation
Isotope temperatures from double ratios of hydrogen, helium, lithium,
beryllium, and carbon isotopic yields, and excited-state temperatures from
yield ratios of particle-unstable resonances in 4He, 5Li, and 8Be, were
determined for spectator fragmentation, following collisions of 197Au with
targets ranging from C to Au at incident energies of 600 and 1000 MeV per
nucleon. A deviation of the isotopic from the excited-state temperatures is
observed which coincides with the transition from residue formation to
multi-fragment production, suggesting a chemical freeze-out prior to thermal
freeze-out in bulk disintegrations.Comment: 14 pages, 10 figures, submitted to Phys. Rev. C, small changes as
suggested by the editors and referee
Statistical Multifragmentation in Central Au+Au Collisions at 35 MeV/u
Multifragment disintegrations, measured for central Au + Au collisions at E/A
= 35 MeV, are analyzed with the Statistical Multifragmentation Model. Charge
distributions, mean fragment energies, and two-fragment correlation functions
are well reproduced by the statistical breakup of a large, diluted and
thermalized system slightly above the multifragmentation threshold.Comment: Latex file, 8 pages + 4 postscript figures available upon request
from [email protected]
Multifragment production in Au+Au at 35 MeV/u
Multifragment disintegration has been measured with a high efficiency
detection system for the reaction at . From the event
shape analysis and the comparison with the predictions of a many-body
trajectories calculation the data, for central collisions, are compatible with
a fast emission from a unique fragment source.Comment: 9 pages, LaTex file, 4 postscript figures available upon request from
[email protected]. - to appear in Phys. Lett.
- …
