A one-dimensional dielectric grating, based on a simple geometry, is proposed
and investigated to enhance light absorption in a monolayer graphene exploiting
guided mode resonances. Numerical findings reveal that the optimized
configuration is able to absorb up to 60% of the impinging light at normal
incidence for both TE and TM polarizations resulting in a theoretical
enhancement factor of about 26 with respect to the monolayer graphene
absorption (about 2.3%). Experimental results confirm this behaviour showing
CVD graphene absorbance peaks up to about 40% over narrow bands of few
nanometers. The simple and flexible design paves the way for the realization of
innovative, scalable and easy-to-fabricate graphene-based optical absorbers