43 research outputs found

    Real-time video correlator

    Get PDF
    Device provides two-dimensional correlation of video data. Operation is reliable, accurate, and predictable

    Ultrasonic metal sheet thickness measurement without prior wave speed calibration

    Get PDF
    Conventional ultrasonic mensuration of sample thickness from one side only requires the bulk wave reverberation time and a calibration speed. This speed changes with temperature, stress, and microstructure, limiting thickness measurement accuracy. Often, only one side of a sample is accessible, making in situ calibration impossible. Non-contact ultrasound can generate multiple shear horizontal guided wave modes on one side of a metal plate. Measuring propagation times of each mode at different transducer separations, allows sheet thickness to be calculated to better than 1% accuracy for sheets of at least 1.5 mm thickness, without any calibration

    Investigation of the Domain Wall Fermion Approach to Chiral Gauge Theories on the Lattice

    Full text link
    We investigate a recent proposal to construct chiral gauge theories on the lattice using domain wall fermions. We restrict ourselves to the finite volume case, in which two domain walls are present, with modes of opposite chirality on each of them. We couple the chiral fermions on only one of the domain walls to a gauge field. In order to preserve gauge invariance, we have to add a scalar field, which gives rise to additional light mirror fermion and scalar modes. We argue that in an anomaly free model these extra modes would decouple if our model possesses a so-called strong coupling symmetric phase. However, our numerical results indicate that such a phase most probably does not exist. ---- Note: 9 Postscript figures are appended as uuencoded compressed tar file.Comment: 27p. Latex; UCSD/PTH 93-28, Wash. U. HEP/93-6

    Chiral Fermions on the Lattice through Gauge Fixing -- Perturbation Theory

    Get PDF
    We study the gauge-fixing approach to the construction of lattice chiral gauge theories in one-loop weak-coupling perturbation theory. We show how infrared properties of the gauge degrees of freedom determine the nature of the continuous phase transition at which we take the continuum limit. The fermion self-energy and the vacuum polarization are calculated, and confirm that, in the abelian case, this approach can be used to put chiral gauge theories on the lattice in four dimensions. We comment on the generalization to the nonabelian case.Comment: 31 pages, 5 figures, two refs. adde

    Certified compilation for cryptography: Extended x86 instructions and constant-time verification

    Get PDF
    We present a new tool for the generation and verification of high-assurance high-speed machine-level cryptography implementations: a certified C compiler supporting instruction extensions to the x86. We demonstrate the practical applicability of our tool by incorporating it into supercop: a toolkit for measuring the performance of cryptographic software, which includes over 2000 different implementations. We show i. that the coverage of x86 implementations in supercop increases significantly due to the added support of instruction extensions via intrinsics and ii. that the obtained verifiably correct implementations are much closer in performance to unverified ones. We extend our compiler with a specialized type system that acts at pre-assembly level; this is the first constant-time verifier that can deal with extended instruction sets. We confirm that, by using instruction extensions, the performance penalty for verifiably constant-time code can be greatly reduced.This work is financed by National Funds through the FCT - Fundação para a CiĂȘncia e a Tecnologia (Portuguese Foundation for Science and Technology) within the project PTDC/CCI-INF/31698/2017, and by the Norte Portugal Regional Operational Programme (NORTE 2020) under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF) and also by national funds through the FCT, within project NORTE-01-0145-FEDER-028550 (REASSURE)

    The Phase Diagram and Spectrum of Gauge-Fixed Abelian Lattice Gauge Theory

    Get PDF
    We consider a lattice discretization of a covariantly gauge-fixed abelian gauge theory. The gauge fixing is part of the action defining the theory, and we study the phase diagram in detail. As there is no BRST symmetry on the lattice, counterterms are needed, and we construct those explicitly. We show that the proper adjustment of these counterterms drives the theory to a new type of phase transition, at which we recover a continuum theory of (free) photons. We present both numerical and (one-loop) perturbative results, and show that they are in good agreement near this phase transition. Since perturbation theory plays an important role, it is important to choose a discretization of the gauge-fixing action such that lattice perturbation theory is valid. Indeed, we find numerical evidence that lattice actions not satisfying this requirement do not lead to the desired continuum limit. While we do not consider fermions here, we argue that our results, in combination with previous work, provide very strong evidence that this new phase transition can be used to define abelian lattice chiral gauge theories.Comment: 42 pages, 30 figure

    Low cost and renewable sulfur-polymers by inverse vulcanisation, and their potential for mercury capture

    Get PDF
    Sulfur is not only a highly abundant element, but also produced as a by-product of the petrochemicals industry. However, it has not been conventionally used to produce functional materials because polymeric sulfur is unstable, and decomposes back to its monomer. Recently, inverse vulcanisation has been used to produce stable polymeric materials with elemental sulfur as a major component. Here we report a series of alternative crosslinkers for inverse vulcanisation that are either low-cost industrial byproducts, or bio-derived renewables. These are shown to produce stable polymers with superior properties to previously reported materials. When made porous by the action of supercritical carbon dioxide or salt templating, these high sulfur polymers show excellent potential for mercury capture and filtration

    The Standard Model from a New Phase Transition on the Lattice

    Full text link
    Several years ago it was conjectured in the so-called Roma Approach, that gauge fixing is an essential ingredient in the lattice formulation of chiral gauge theories. In this paper we discuss in detail how the gauge-fixing approach may be realized. As in the usual (gauge invariant) lattice formulation, the continuum limit corresponds to a gaussian fixed point, that now controls both the transversal and the longitudinal modes of the gauge field. A key role is played by a new phase transition separating a conventional Higgs or Higgs-confinement phase, from a phase with broken rotational invariance. In the continuum limit we expect to find a scaling region, where the lattice correlators reproduce the euclidean correlation functions of the target (chiral) gauge theory, in the corresponding continuum gauge.Comment: 16 pages, revtex, one figure. Clarifications made, mainly in sections 3 and 6 that deal with the fermion action, to appear in Phys Rev

    A further study of the possible scaling region of lattice chiral fermions

    Get PDF
    In the possible scaling region for an SU(2) lattice chiral fermion advocated in {\it Nucl. Phys.} B486 (1997) 282, no hard spontaneous symmetry breaking occurs and doublers are gauge-invariantly decoupled via mixing with composite three-fermion-states that are formed by local multifermion interactions. However the strong coupling expansion breaks down due to no ``static limit'' for the low-energy limit (pa∌0pa\sim 0). In both neutral and charged channels, we further analyze relevant truncated Green functions of three-fermion-operators by the strong coupling expansion and analytical continuation of these Green functions in the momentum space. It is shown that in the low-energy limit, these relevant truncated Green functions of three-fermion-states with the ``wrong'' chiralities positively vanish due to the generalized form factors (the wave-function renormalizations) of these composite three-fermion-states vanishing as O((pa)^4) for pa∌0pa\sim 0. This strongly implies that the composite three-fermion-states with ``wrong'' chirality are ``decoupled'' in this limit and the low-energy spectrum is chiral, as a consequence, chiral gauge symmetries can be exactly preserved.Comment: A few typing-errors, in particular in Eq.50, have been correcte
    corecore