5,626 research outputs found
Orientation to the sun by animals and its interaction with crypsis
1. Orientation with respect to the sun has been observed in a wide range of species and hasgenerally been interpreted in terms of thermoregulation and/or ultraviolet (UV) protection. For countershaded animals, orientation with respect to the sun may also result from the pres-sure to exploit the gradient of coloration optimally to enhance crypsis.2. Here, we use computational modelling to predict the optimal countershading pattern for anoriented body. We assess how camouflage performance declines as orientation varies using acomputational model that incorporates realistic lighting environments.3. Once an optimal countershading pattern for crypsis has been chosen, we determineseparately how UV protection/irradiation and solar thermal inflow fluctuate with orientation.4. We show that body orientations that could optimally use countershading to enhance crypsisare very similar to those that allow optimal solar heat inflow and UV protection.5. Our findings suggest that crypsis has been overlooked as a selective pressure on orientationand that new experiments should be designed to tease apart the respective roles of these different selective pressures. We propose potential experiments that could achieve this
A Compact Extreme Scattering Event Cloud Towards AO 0235+164
We present observations of a rare, rapid, high amplitude Extreme Scattering
Event toward the compact BL-Lac AO 0235+164 at 6.65 GHz. The ESE cloud is
compact; we estimate its diameter between 0.09 and 0.9 AU, and is at a distance
of less than 3.6 kpc. Limits on the angular extent of the ESE cloud imply a
minimum cloud electron density of ~ 4 x 10^3 cm^-3. Based on the amplitude and
timescale of the ESE observed here, we suggest that at least one of the
transients reported by Bower et al. (2007) may be attributed to ESEs.Comment: 11 pages, 2 figure
Observations of Intrahour Variable Quasars: Scattering in our Galactic Neighbourhood
Interstellar scintillation (ISS) has been established as the cause of the
random variations seen at centimetre wavelengths in many compact radio sources
on timescales of a day or less. Observations of ISS can be used to probe
structure both in the ionized insterstellar medium of the Galaxy, and in the
extragalactic sources themselves, down to microarcsecond scales. A few quasars
have been found to show large amplitude scintillations on unusually rapid,
intrahour timescales. This has been shown to be due to weak scattering in very
local Galactic ``screens'', within a few tens of parsec of the Sun. The short
variability timescales allow detailed study of the scintillation properties in
relatively short observing periods with compact interferometric arrays. The
three best-studied ``intrahour variable'' quasars, PKS 0405-385, J1819+3845 and
PKS 1257-326, have been instrumental in establishing ISS as the principal cause
of intraday variability at centimetre wavelengths. Here we review the relevant
results from observations of these three sources.Comment: 10 pages, 4 figures, to appear in Astronomical and Astrophysical
Transaction
Dual-Frequency Observations of 140 Compact, Flat-Spectrum Active Galactic Nuclei for Scintillation-Induced Variability
The 4.9 GHz Micro-Arcsecond Scintillation-Induced Variability (MASIV) Survey
detected a drop in Interstellar Scintillation (ISS) for sources at redshifts z
> 2, indicating an apparent increase in angular diameter or a decrease in flux
density of the most compact components of these sources, relative to their
extended emission. This can result from intrinsic source size effects or
scatter broadening in the Intergalactic Medium (IGM), in excess of the expected
(1+z)^0.5 angular diameter scaling of brightness temperature limited sources
due to cosmological expansion. We report here 4.9 GHz and 8.4 GHz observations
and data analysis for a sample of 140 compact, flat-spectrum sources which may
allow us to determine the origin of this angular diameter-redshift relation by
exploiting their different wavelength dependences. In addition to using ISS as
a cosmological probe, the observations provide additional insight into source
morphologies and the characteristics of ISS. As in the MASIV Survey, the
variability of the sources is found to be significantly correlated with
line-of-sight H-alpha intensities, confirming its link with ISS. For 25
sources, time delays of about 0.15 to 3 days are observed between the
scintillation patterns at both frequencies, interpreted as being caused by a
shift in core positions when probed at different optical depths. Significant
correlation is found between ISS amplitudes and source spectral index; in
particular, a large drop in ISS amplitudes is observed at spectral indices of <
-0.4 confirming that steep spectrum sources scintillate less. We detect a
weakened redshift dependence of ISS at 8.4 GHz over that at 4.9 GHz, with the
mean variance at 4-day timescales reduced by a factor of 1.8 in the z > 2
sources relative to the z < 2 sources, as opposed to the factor of 3 decrease
observed at 4.9 GHz. This suggests scatter broadening in the IGM.Comment: 30 pages, 14 figures, accepted for publication in the Astronomical
Journa
A Chandra Survey of Quasar Jets: First Results
We present results from Chandra X-ray imaging and spectroscopy of a
flux-limited sample of flat spectrum radio-emitting quasars with jet-like
extended structure. Twelve of twenty quasar jets are detected in 5 ks ACIS-S
exposures. The quasars without X-ray jets are not significantly different from
those in the sample with detected jets except that the extended radio emission
is generally fainter. New radio maps are combined with the X-ray images in
order to elucidate the relation between radio and X-ray emission in spatially
resolved structures. We find a variety of morphologies, including long straight
jets and bends up to 90 degrees. All X-ray jets are one-sided although the
radio images used for source selection often show lobes opposite the X-ray
jets. The FR II X-ray jets can all be interpreted as inverse Compton scattering
of cosmic microwave background photons by electrons in large-scale relativistic
jets although deeper observations are required to test this interpretation in
detail. Applying this interpretation to the jets as a population, we find that
the jets would be aligned to within 30 degrees of the line of sight generally,
assuming that the bulk Lorentz factor of the jets is 10.Comment: 25 pages with 5 pages of color figures; accepted for publication in
the Astrophysical Journal Supplements; higher resolution jpeg images are
available at http://space.mit.edu/home/jonathan/jets
Why Do Compact Active Galactic Nuclei at High Redshift Scintillate Less?
The fraction of compact active galactic nuclei (AGNs) that exhibit
interstellar scintillation (ISS) at radio wavelengths, as well as their
scintillation amplitudes, have been found to decrease significantly for sources
at redshifts z > 2. This can be attributed to an increase in the angular sizes
of the \muas-scale cores or a decrease in the flux densities of the compact
\muas cores relative to that of the mas-scale components with increasing
redshift, possibly arising from (1) the space-time curvature of an expanding
Universe, (2) AGN evolution, (3) source selection biases, (4) scatter
broadening in the ionized intergalactic medium (IGM) and intervening galaxies,
or (5) gravitational lensing. We examine the frequency scaling of this redshift
dependence of ISS to determine its origin, using data from a dual-frequency
survey of ISS of 128 sources at 0 < z < 4. We present a novel method of
analysis which accounts for selection effects in the source sample. We
determine that the redshift dependence of ISS is partially linked to the
steepening of source spectral indices ({\alpha}^8.4_4.9) with redshift, caused
either by selection biases or AGN evolution, coupled with weaker ISS in the
{\alpha}^8.4_4.9 < -0.4 sources. Selecting only the -0.4 < {\alpha}^8.4_4.9 <
0.4 sources, we find that the redshift dependence of ISS is still significant,
but is not significantly steeper than the expected (1+z)^0.5 scaling of source
angular sizes due to cosmological expansion for a brightness temperature and
flux-limited sample of sources. We find no significant evidence for scatter
broadening in the IGM, ruling it out as the main cause of the redshift
dependence of ISS. We obtain an upper limit to IGM scatter broadening of <
110\muas at 4.9 GHz with 99% confidence for all lines of sight, and as low as <
8\muas for sight-lines to the most compact, \sim 10\muas sources.Comment: 38 pages, 13 figures, accepted for publication in The Astrophysical
Journa
- …
