98 research outputs found

    miRNAs in serum exosomes for differential diagnosis of brain metastases

    Get PDF
    Circulating miRNAs are increasingly studied and proposed as tumor markers with the aim of investigating their role in monitoring the response to therapy as well as the natural evolution of primary or secondary brain tumors. This study aimed to evaluate the modulation of the expression of three miRNAs, miR-21, miR-222 and miR-124-3p, in the serum exosomes of patients with high-grade gliomas (HGGs) and brain metastases (BMs) to verify their usefulness in the differential diagnosis of brain masses; then, it focused on their variations following the surgical and/or radiosurgical treatment of the BMs. A total of 105 patients with BMs from primary lung or breast cancer, or melanoma underwent neurosurgery or radiosurgery treatment, and 91 patients with HGGs were enrolled, along with 30 healthy controls. A significant increase in miR-21 expression in serum exosomes was observed in both HGGs and BMs compared with healthy controls; on the other hand, miR-124-3p was significantly decreased in BMs, and it was increased in HGGs. After the surgical or radiosurgical treatment of patients with BMs, a significant reduction in miR-21 was noted with both types of treatments. This study identified a signature of exosomal miRNAs that could be useful as a noninvasive complementary analysis both in the differential diagnosis of BMs from glial tumors and in providing information on tumor evolution over time

    Thermal remote sensing from Airborne Hyperspectral Scanner data in the framework of the SPARC and SEN2FLEX projects: an overview

    Get PDF
    The AHS (Airborne Hyperspectral Scanner) instrument has 80 spectral bands covering the visible and near infrared (VNIR), short wave infrared (SWIR), mid infrared (MIR) and thermal infrared (TIR) spectral range. The instrument is operated by Instituto Nacional de Técnica Aerospacial (INTA), and it has been involved in several field campaigns since 2004. <br><br> This paper presents an overview of the work performed with the AHS thermal imagery provided in the framework of the SPARC and SEN2FLEX campaigns, carried out respectively in 2004 and 2005 over an agricultural area in Spain. The data collected in both campaigns allowed for the first time the development and testing of algorithms for land surface temperature and emissivity retrieval as well as the estimation of evapotranspiration from AHS data. Errors were found to be around 1.5 K for land surface temperature and 1 mm/day for evapotranspiration

    Early Diagnosis of Vegetation Health From High-Resolution Hyperspectral and Thermal Imagery: Lessons Learned From Empirical Relationships and Radiative Transfer Modelling

    Get PDF
    [Purpose of Review] We provide a comprehensive review of the empirical and modelling approaches used to quantify the radiation–vegetation interactions related to vegetation temperature, leaf optical properties linked to pigment absorption and chlorophyll fluorescence emission, and of their capability to monitor vegetation health. Part 1 provides an overview of the main physiological indicators (PIs) applied in remote sensing to detect alterations in plant functioning linked to vegetation diseases and decline processes. Part 2 reviews the recent advances in the development of quantitative methods to assess PI through hyperspectral and thermal images.[Recent Findings] In recent years, the availability of high-resolution hyperspectral and thermal images has increased due to the extraordinary progress made in sensor technology, including the miniaturization of advanced cameras designed for unmanned aerial vehicle (UAV) systems and lightweight aircrafts. This technological revolution has contributed to the wider use of hyperspectral imaging sensors by the scientific community and industry; it has led to better modelling and understanding of the sensitivity of different ranges of the electromagnetic spectrum to detect biophysical alterations used as early warning indicators of vegetation health.[Summary] The review deals with the capability of PIs such as vegetation temperature, chlorophyll fluorescence, photosynthetic energy downregulation and photosynthetic pigments detected through remote sensing to monitor the early responses of plants to different stressors. Various methods for the detection of PI alterations have recently been proposed and validated to monitor vegetation health. The greatest challenges for the remote sensing community today are (i) the availability of high spatial, spectral and temporal resolution image data; (ii) the empirical validation of radiation–vegetation interactions; (iii) the upscaling of physiological alterations from the leaf to the canopy, mainly in complex heterogeneous vegetation landscapes; and (iv) the temporal dynamics of the PIs and the interaction between physiological changes.The authors received funding provided by the FluorFLIGHT (GGR801) Marie Curie Fellowship, the QUERCUSAT and ESPECTRAMED projects (Spanish Ministry of Economy and Competitiveness), the Academy of Finland (grants 266152, 317387) and the European Research Council Synergy grant ERC-2013-SyG-610028 IMBALANCE-P.Peer reviewe

    Phylogenetic analysis of vancomycin-resistant enterococcus faecium genotypes associated with outbreaks or sporadic infections in Italy

    No full text
    Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were used to investigate the genetic relatedness of a total of 41 Enterococcus faecium isolates from different backgrounds (hospital outbreaks, n = 9; documented sporadic infections, n = 10; asymptomatic sporadic carriage of hospitalized patients, n = 9; healthy persons, n = 3; non-human sources, n = 10) over the period 1996-2004 in comparison with clones that have spread in Italy since 1993. Thirty six isolates were vancomycin-resistant and five were vancomycin-susceptible. eBURST analysis of MLST sequence types generated two groups: (1) group 1 (27 isolates) forming a clonal complex (CC17) with the predicted founder corresponding to ST17, a genotype identified in 1994, that included esp-positive and -negative clones isolated from hospitalized patients; and (2) group 2 (14 isolates) including esp-negative clones from different sources (hospitalized patients, healthy persons and non-human sources). The hyl gene was found in five strains with different PFGE types, all belonging to group 1, whereas cylA, gelE, and asa1, were not detected in any of the isolates. Our data showed that the evolution of the MLST C1 epidemic lineage has been continuing in several Italian areas and generating new clones with different PFGE patterns. The main, though not the sole, mechanism that has driven this evolution was confirmed to be linked to the presence of the esp gene
    corecore