472 research outputs found
Pulsatile blood flow through a constricted porous artery
In this paper a speculative study of an incompressible Newtonian blood flow through a constricted porous channel and pulsatile nature is inspected. Porosity parameter λ is incorporated in the momentum equation. Governing nonlinear differential equations are numerically evaluated by employing the perturbation method technique for a very small perturbation parameter ε 1 such that ε ≠ 0 and with conformable boundary conditions. Numerical results of the flow velocity profile and volumetric flow rate have been derived numerically and detailed graphical analysis for different physical parameters porosity, Reynolds number and stenosis has been presented. It is found that arterial blood velocity is dependent upon all of these factors and that the relationship of fluid velocity and flow is more complex and nonlinear than heretofore generally believe. Furthermore the flow velocity enhanced with Reynolds number, porosity parameter and at maximum position of the stenosis/constriction
A single-source precursor approach to solution processed indium arsenide thin films
This paper reports the synthesis of the novel single-source precursor, [{(MeInAstBu)3}2(Me2InAs(tBu)H)2] and the subsequent first report of aerosol-assisted chemical vapour deposition of InAs thin films. Owing to the use of the single-source precursor, highly crystalline and stoichiometric films were grown at a relatively low deposition temperature of 450 °C. Core level XPS depth profiling studies showed some partial oxidation of the film surface, however this was self-limiting and disappeared on etch profiles. Valence band XPS analysis matched well with the simulated density of state spectrum. Hall effect measurements performed on the films showed that the films were n-type with promising resistivity (3.6 × 10−3 Ω cm) and carrier mobility (410 cm2 V−1 s−1) values despite growth on amorphous glass substrates
Identification of absolute geometries of cis and trans molecular isomers by Coulomb Explosion Imaging
Citation: Ablikim, U., Bomme, C., Xiong, H., Savelyev, E., Obaid, R., Kaderiya, B., . . . Rolles, D. (2016). Identification of absolute geometries of cis and trans molecular isomers by Coulomb Explosion Imaging. Scientific Reports, 6, 8. doi:10.1038/srep38202An experimental route to identify and separate geometric isomers by means of coincident Coulomb explosion imaging is presented, allowing isomer-resolved photoionization studies on isomerically mixed samples. We demonstrate the technique on cis/trans 1,2-dibromoethene (C2H2Br2). The momentum correlation between the bromine ions in a three-body fragmentation process induced by bromine 3d inner-shell photoionization is used to identify the cis and trans structures of the isomers. The experimentally determined momentum correlations and the isomer-resolved fragment-ion kinetic energies are matched closely by a classical Coulomb explosion model
Coronary CT angiography features of ruptured and high-risk atherosclerotic plaques: Correlation with intra-vascular ultrasound
BACKGROUND: Features of ruptured and high-risk plaque have been described on coronary computed tomography angiography (coronary CTA), but not systematically assessed against intravascular ultrasound (IVUS). We examined the ability of coronary CTA to identify IVUS defined ruptured plaque and Virtual Histology Intravascular Ultrasound (VH-IVUS) defined thin-cap fibroatheroma (TCFA). METHODS: Sixty-three patients (32 with acute coronary syndrome and 31 with stable angina) underwent coronary CTA, IVUS and VH-IVUS. Plaque rupture on CTA was defined as intra-plaque contrast and its frequency compared with IVUS-defined plaque rupture. We then examined the relationship of conventional coronary CTA high-risk features (low attenuation plaque, positive remodeling, spotty calcification and the Napkin-Ring sign) in VH-IVUS-defined TCFA. We compared these with a novel index based on quantifying the ratio of necrotic core to fibrous plaque using x-ray attenuation cut-offs derived from the relationship of plaque to luminal contrast attenuation. RESULTS: Of the 71 plaques interrogated with IVUS, 39 were ruptured. Coronary CTA correctly detected 13-ruptured plaques with 3 false positives giving high specificity (91%) but low sensitivity (33%). None of the conventional coronary CTA high-risk features were significantly more frequent in the higher-risk (VH-IVUS defined thin-cap) compared with thick-cap fibroatheroma. However, the new index (necrotic core/fibrous plaque ratio) was higher in thin-cap (mean 0.90) vs. thick-cap fibroatheroma (mean 0.59), p < 0.05. CONCLUSIONS: Compared with intravascular ultrasound, coronary CTA identifies ruptured plaque with good specificity but poor sensitivity. We have identified a novel high-risk feature on coronary CTA (necrotic core/fibrous plaque ratio that is associated with VH-IVUS defined-TCFA.Supported by a British Heart Foundation grant FS/10/025/2819
Effects of Arnebia benthamii Extract on Growth Performance, Immunological Parameters and Disease Resistance against Flexibacter columnare in Spotted Snakehead Channa punctata (Bloch)
Herbal immunostimulants are known to improve disease resistance in fish by enhancing specific and non-specific defensive mechanisms. The present study was conducted to evaluate the effects of Arnebia benthamii extract (AE) on growth rate, immune status, and disease resistance towards Flexibacter columnare in spotted snakehead Channa punctata. Each experimental group of healthy C. punctata was fed on one of the four experimental diets viz. basal diet (without any AE supplementation), AE10 (supplemented with 10 mg AE/kg basal diet), AE20 (supplemented with 20 mg AE/kg basal diet) and AE40 (supplemented with 40 mg AE/kg basal diet) for 42 days. When the concentration of Arnebia benthamii was raised from 0 to 40 mg/kg, the weight gain (WG) and specific growth rate (SGR) were considerably enhanced. The lysozyme activity, C3, C4, and serum globulin levels were also significantly increased in all Arnebia benthamii supplemented groups. IgM concentration in fish fed on AE40 diet was significantly higher than in fish fed on basal diet. All A. benthamii treatment groups exhibited significantly higher survival rates after being challenged with F. columnare. These findings showed that supplementing diet of C. punctata with A. benthamii improved growth, immunological response, and disease resistance against F. columnare, with the greatest benefits in fish fed on AE40 diet for 42 days
The sharpeness of some cluster set results
We show that a recent cluster set theorem of Rung is sharp in a
certain sense. This is accomplished through the construction of an
interpolating sequence whose limit set is closed, totally disconnected and
porous. The results also generalize some of Dolzenko's cluster set theorems
CFD modeling and performance evaluation of multipass solar air heaters
This article investigates the impacts of flow configurations on the thermal performance of a solar heater system. Recycled aluminum cans (RACs) have been utilized as turbulators with a double pass single duct solar air collector. The CFD software of COMSOL Multiphysics V5.3a is used to model three designs: Cocurrent (model A), countercurrent (model B), and U-shape (model C). The numerical results reveal that the U-shape design offers a greater thermal performance of 5.4% and 6.5%, respectively, compared with the cocurrent and countercurrent flow models. Furthermore, an outdoor experiment is performed based on the numerical modeling of flow configurations. The experimental setup is examined for three configurations of model C, namely, solar air heater (SAH) without RAC model C-I (plain model), SAH with in-line RAC layout (model C-II), and SAH with staggered RAC layout (model C-III). We found the double pass single duct solar air collector (model C) design is in a good agreement with the experimental data, and model C-III has a better thermal efficiency of 60.2%, compared to those of model C-II, 53.1%, and model C-I, 49.4%
Energy-absorption buildup factors and specific absorbed fractions of energy for bioactive glasses
In the present work, effective atomic numbers Zeff, energy-absorption buildup factors EABF and specific absorbed fractions of energy (Φ) for different bioactive glasses have been calculated in the present work. Geometric-Progression (G-P) fitting method was used for computation of EABF. The computed EABF is used to estimate the values of Φ. It is shown that the EABF and Φ are dependent on Zeff and mean free path. In addition, EABF and Φ were the largest for S4 and S7.The results in this work could be useful in choosing a suitable type of these glasses which in turn are able to resist possible radiation damages at human body and to determine the thickness and shape of the bioactive glasses needed
Low-Temperature Phase Transitions in a Soluble Oligoacene and Their Effect on Device Performance and Stability
The use of organic semiconductors in high-performance organic field-effect transistors requires a thorough understanding of the effects that processing conditions, thermal, and bias-stress history have on device operation. Here, we evaluate the temperature dependence of the electrical properties of transistors fabricated with 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene, a material that has attracted much attention recently due to its exceptional electrical properties. We have discovered a phase transition at T = 205 K and discuss its implications on device performance and stability. We examined the impact of this low-temperature phase transition on the thermodynamic, electrical, and structural properties of both single crystals and thin films of this material. Our results show that while the changes to the crystal structure are reversible, the induced thermal stress yields irreversible degradation of the devices
- …
