1,988 research outputs found
Improving the Renormalization Group approach to the quantum-mechanical double well potential
The gap between ground and first excited state of the quantum-mechanical
double well is calculated using the Renormalization Group equations to the
second order in the derivative expansion, obtained within a class of proper
time regulators. Agreement with the exact results is obtained both in the
strong and weak coupling regime.Comment: 10 pages, 2 EPS figure
Parallel quantized charge pumping
Two quantized charge pumps are operated in parallel. The total current
generated is shown to be far more accurate than the current produced with just
one pump operating at a higher frequency. With the application of a
perpendicular magnetic field the accuracy of quantization is shown to be 20
ppm for a current of pA. The scheme for parallel pumping presented in
this work has applications in quantum information processing, the generation of
single photons in pairs and bunches, neural networking and the development of a
quantum standard for electrical current. All these applications will benefit
greatly from the increase in output current without the characteristic decrease
in accuracy as a result of high-frequency operation
A Statistical Method for Estimating Luminosity Functions using Truncated Data
The observational limitations of astronomical surveys lead to significant
statistical inference challenges. One such challenge is the estimation of
luminosity functions given redshift and absolute magnitude measurements
from an irregularly truncated sample of objects. This is a bivariate density
estimation problem; we develop here a statistically rigorous method which (1)
does not assume a strict parametric form for the bivariate density; (2) does
not assume independence between redshift and absolute magnitude (and hence
allows evolution of the luminosity function with redshift); (3) does not
require dividing the data into arbitrary bins; and (4) naturally incorporates a
varying selection function. We accomplish this by decomposing the bivariate
density into nonparametric and parametric portions. There is a simple way of
estimating the integrated mean squared error of the estimator; smoothing
parameters are selected to minimize this quantity. Results are presented from
the analysis of a sample of quasars.Comment: 30 pages, 9 figures, Accepted for publication in Ap
Bell-inequality violation with a triggered photon-pair source
Here we demonstrate, for the first time, violation of Bell's inequality using
a triggered quantum dot photon-pair source without post-selection. Furthermore,
the fidelity to the expected Bell state can be increased above 90% using
temporal gating to reject photons emitted at times when collection of
uncorrelated light is more probable. A direct measurement of a CHSH Bell
inequality is made showing a clear violation, highlighting that a quantum dot
entangled photon source is suitable for communication exploiting non-local
quantum correlations.Comment: 14 pages, 4 figure
A Comparative Evaluation of Distance Learning Versus Traditional Teaching Methods in an Associate Degree Nursing Program
The policy question addressed by this article is whether distance education works. Are students taught by distance learning disadvantaged relative to their peers in traditional educational settings? The results of this study strongly indicate that distance learning in nursing does work and that significant benefits may result for rural Maine residents if distance learning opportunities are expanded
Possible effect of collective modes in zero magnetic field transport in an electron-hole bilayer
We report single layer resistivities of 2-dimensional electron and hole gases
in an electron-hole bilayer with a 10nm barrier. In a regime where the
interlayer interaction is stronger than the intralayer interaction, we find
that an insulating state () emerges at or
lower, when both the layers are simultaneously present. This happens deep in
the metallic" regime, even in layers with , thus making
conventional mechanisms of localisation due to disorder improbable. We suggest
that this insulating state may be due to a charge density wave phase, as has
been expected in electron-hole bilayers from the Singwi-Tosi-Land-Sj\"olander
approximation based calculations of L. Liu {\it et al} [{\em Phys. Rev. B},
{\bf 53}, 7923 (1996)]. Our results are also in qualitative agreement with
recent Path-Integral-Monte-Carlo simulations of a two component plasma in the
low temperature regime [ P. Ludwig {\it et al}. {\em Contrib. Plasma Physics}
{\bf 47}, No. 4-5, 335 (2007)]Comment: 5 pages + 3 EPS figures (replaced with published version
Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder
Mammalian microRNAs are emerging as key regulators of the development and function of the immune system. Here, we report a strong but transient induction of miR-155 in mouse bone marrow after injection of bacterial lipopolysaccharide (LPS) correlated with granulocyte/monocyte (GM) expansion. Demonstrating the sufficiency of miR-155 to drive GM expansion, enforced expression in mouse bone marrow cells caused GM proliferation in a manner reminiscent of LPS treatment. However, the miR-155–induced GM populations displayed pathological features characteristic of myeloid neoplasia. Of possible relevance to human disease, miR-155 was found to be overexpressed in the bone marrow of patients with certain subtypes of acute myeloid leukemia (AML). Furthermore, miR-155 repressed a subset of genes implicated in hematopoietic development and disease. These data implicate miR-155 as a contributor to physiological GM expansion during inflammation and to certain pathological features associated with AML, emphasizing the importance of proper miR-155 regulation in developing myeloid cells during times of inflammatory stress
Kainate receptors depress excitatory synaptic transmission at CA3-->CA1 synapses in the hippocampus via a direct presynaptic action
Kainate receptor activation depresses synaptic release of neurotransmitter at a number of synapses in the CNS. The mechanism underlying this depression is controversial, and both ionotropic and metabotropic mechanisms have been suggested. We report here that the AMPA/kainate receptor agonists domoate (DA) and kainate (KA) cause a presynaptic depression of glutamatergic transmission at CA3-->CA1 synapses in the hippocampus, which is not blocked by the AMPA receptor antagonist GYKI 53655 but is blocked by the AMPA/KA receptor antagonist CNQX. Neither a blockade of interneuronal discharge nor antagonists of several neuromodulators affect the depression, suggesting that it is not the result of indirect excitation and subsequent release of a neuromodulator. Presynaptic depolarization, achieved via increasing extracellular K(+), caused a depression of the presynaptic fiber volley and an increase in the frequency of miniature EPSCs. Neither effect was observed with DA, suggesting that DA does not depress transmission via a presynaptic depolarization. However, the effects of DA were abolished by the G-protein inhibitors N-ethylmaleimide and pertussis toxin. These results suggest that KA receptor activation depresses synaptic transmission at this synapse via a direct, presynaptic, metabotropic action
- …