research

A Statistical Method for Estimating Luminosity Functions using Truncated Data

Abstract

The observational limitations of astronomical surveys lead to significant statistical inference challenges. One such challenge is the estimation of luminosity functions given redshift zz and absolute magnitude MM measurements from an irregularly truncated sample of objects. This is a bivariate density estimation problem; we develop here a statistically rigorous method which (1) does not assume a strict parametric form for the bivariate density; (2) does not assume independence between redshift and absolute magnitude (and hence allows evolution of the luminosity function with redshift); (3) does not require dividing the data into arbitrary bins; and (4) naturally incorporates a varying selection function. We accomplish this by decomposing the bivariate density into nonparametric and parametric portions. There is a simple way of estimating the integrated mean squared error of the estimator; smoothing parameters are selected to minimize this quantity. Results are presented from the analysis of a sample of quasars.Comment: 30 pages, 9 figures, Accepted for publication in Ap

    Similar works

    Available Versions

    Last time updated on 27/12/2021
    Last time updated on 05/06/2019