358 research outputs found
Understanding the dynamical structure of pulsating stars: The Baade-Wesselink projection factor of the delta Scuti stars AI Vel and beta Cas
Aims. The Baade-Wesselink method of distance determination is based on the
oscillations of pulsating stars. The key parameter of this method is the
projection factor used to convert the radial velocity into the pulsation
velocity. Our analysis was aimed at deriving for the first time the projection
factor of delta Scuti stars, using high-resolution spectra of the
high-amplitude pulsator AI Vel and of the fast rotator beta Cas. Methods. The
geometric component of the projection factor (i.e. p0) was calculated using a
limb-darkening model of the intensity distribution for AI Vel, and a
fast-rotator model for beta Cas. Then, using SOPHIE/OHP data for beta Cas and
HARPS/ESO data for AI Vel, we compared the radial velocity curves of several
spectral lines forming at different levels in the atmosphere and derived the
velocity gradient associated to the spectral-line-forming regions in the
atmosphere of the star. This velocity gradient was used to derive a dynamical
projection factor p. Results. We find a flat velocity gradient for both stars
and finally p = p0 = 1.44 for AI Vel and p = p0 = 1.41 for beta Cas. By
comparing Cepheids and delta Scuti stars, these results bring valuable insights
into the dynamical structure of pulsating star atmospheres. They suggest that
the period-projection factor relation derived for Cepheids is also applicable
to delta Scuti stars pulsating in a dominant radial mode
Direct imaging with highly diluted apertures. II. Properties of the point spread function of a hypertelescope
In the future, optical stellar interferometers will provide true images
thanks to larger number of telescopes and to advanced cophasing subsystems.
These conditions are required to have sufficient resolution elements (resel) in
the image and to provide direct images in the hypertelescope mode. It has
already been shown that hypertelescopes provide snapshot images with a
significant gain in sensitivity without inducing any loss of the useful field
of view for direct imaging applications. This paper aims at studying the
properties of the point spread functions of future large arrays using the
hypertelescope mode. Numerical simulations have been performed and criteria
have been defined to study the image properties. It is shown that the choice of
the configuration of the array is a trade-off between the resolution, the halo
level and the field of view. A regular pattern of the array of telescopes
optimizes the image quality (low halo level and maximum encircled energy in the
central peak), but decreases the useful field of view. Moreover, a
non-redundant array is less sensitive to the space aliasing effect than a
redundant array.Comment: 10 pages paper with referee in A&
Self consistent modelling of the projection factor for interferometric distance determination
Astronomy and Astrophysics, v. 428, p. 131-137, 2004. http://dx.doi.org/10.1051/0004-6361:20041419International audienc
Separated Fringe Packet Observations with the CHARA Array II: Andromeda, HD 178911, and {\xi} Cephei
When observed with optical long-baseline interferometers (OLBI), components
of a binary star which are sufficiently separated produce their own
interferometric fringe packets; these are referred to as Separated Fringe
Packet (SFP) binaries. These SFP binaries can overlap in angular separation
with the regime of systems resolvable by speckle interferometry at single,
large-aperture telescopes and can provide additional measurements for
preliminary orbits lacking good phase coverage, help constrain elements of
already established orbits, and locate new binaries in the undersampled regime
between the bounds of spectroscopic surveys and speckle interferometry. In this
process, a visibility calibration star is not needed, and the separated fringe
packets can provide an accurate vector separation. In this paper, we apply the
SFP approach to {\omega} Andromeda, HD 178911, and {\xi} Cephei with the CLIMB
three-beam combiner at the CHARA Array. For these systems we determine
component masses and parallax of 0.9630.049 and
0.8600.051 and 39.541.85 milliarcseconds (mas) for
{\omega} Andromeda, for HD 178911 of 0.8020.055 and
0.6220.053 with 28.261.70 mas, and masses of
1.0450.031 and 0.4080.066 and
38.102.81 mas for {\xi} Cephei.Comment: 28 pages, 4 tables, 6 figures, accepted to AJ May 201
An interferometric study of the post-AGB binary 89 Herculis I Spatially resolving the continuum circumstellar environment at optical and near-IR wavelengths with the VLTI, NPOI, IOTA, PTI, and the CHARA Array
Binary post-AGB stars are interesting laboratories to study both the
evolution of binaries as well as the structure of circumstellar disks. A
multiwavelength high angular resolution study of the prototypical object 89
Herculis is performed with the aim of identifying and locating the different
emission components seen in the SED. A large interferometric data set,
collected over the past decade and covering optical and near-IR wavelengths, is
analyzed with simple geometric models. Combining the interferometric
constraints with the photometry and the optical spectra, we reassess the energy
budget of the post-AGB star and its circumstellar environment. We report the
first (direct) detection of a large (35-40%) optical circumstellar flux
contribution and spatially resolve its emission region. Given this large amount
of reprocessed and/or redistributed optical light, the fitted size of the
emission region is rather compact and fits with(in) the inner rim of the
circumbinary dust disk. This rim dominates our K band data through thermal
emission and is rather compact, emitting significantly already at a radius of
twice the orbital separation. We interpret the circumstellar optical flux as
due to a scattering process, with the scatterers located in the extremely
puffed-up inner rim of the disk and possibly also in a bipolar outflow seen
pole-on. A non-LTE gaseous origin in an inner disk cannot be excluded but is
considered highly unlikely. This direct detection of a significant amount of
circumbinary light at optical wavelengths poses several significant questions
regarding our understanding of both post-AGB binaries and the physics in their
circumbinary disks. Although the identification of the source of
emission/scattering remains inconclusive without further study on this and
similar objects, the implications are manifold.Comment: Accepted for publication in A&A, 16 pages, 15 figure
A new interferometric study of four exoplanet host stars : {\theta} Cygni, 14 Andromedae, {\upsilon} Andromedae and 42 Draconis
Studying exoplanet host stars is of the utmost importance to establish the
link between the presence of exoplanets around various types of stars and to
understand the respective evolution of stars and exoplanets.
Using the limb-darkened diameter (LDD) obtained from interferometric data, we
determine the fundamental parameters of four exoplanet host stars. We are
particularly interested in the F4 main-sequence star, {\theta} Cyg, for which
Kepler has recently revealed solar-like oscillations that are unexpected for
this type of star. Furthermore, recent photometric and spectroscopic
measurements with SOPHIE and ELODIE (OHP) show evidence of a quasi-periodic
radial velocity of \sim150 days. Models of this periodic change in radial
velocity predict either a complex planetary system orbiting the star, or a new
and unidentified stellar pulsation mode.
We performed interferometric observations of {\theta} Cyg, 14 Andromedae,
{\upsilon} Andromedae and 42 Draconis for two years with VEGA/CHARA (Mount
Wilson, California) in several three-telescope configurations. We measured
accurate limb darkened diameters and derived their radius, mass and temperature
using empirical laws.
We obtain new accurate fundamental parameters for stars 14 And, {\upsilon}
And and 42 Dra. We also obtained limb darkened diameters with a minimum
precision of \sim 1.3%, leading to minimum planet masses of Msini=5.33\pm 0.57,
0.62 \pm 0.09 and 3.79\pm0.29 MJup for 14 And b, {\upsilon} And b and 42 Dra b,
respectively. The interferometric measurements of {\theta} Cyg show a
significant diameter variability that remains unexplained up to now. We propose
that the presence of these discrepancies in the interferometric data is caused
by either an intrinsic variation of the star or an unknown close companion
orbiting around it.Comment: 10 pages + 2 pages appendix, 16 figures, accepted for publication in
A&
Tests with a Carlina-type diluted telescope; Primary coherencing
Studies are under way to propose a new generation of post-VLTI
interferometers. The Carlina concept studied at the Haute- Provence Observatory
is one of the proposed solutions. It consists in an optical interferometer
configured like a diluted version of the Arecibo radio telescope: above the
diluted primary mirror made of fixed cospherical segments, a helium balloon (or
cables suspended between two mountains), carries a gondola containing the focal
optics. Since 2003, we have been building a technical demonstrator of this
diluted telescope. First fringes were obtained in May 2004 with two
closely-spaced primary segments and a CCD on the focal gondola. We have been
testing the whole optical train with three primary mirrors. The main aim of
this article is to describe the metrology that we have conceived, and tested
under the helium balloon to align the primary mirrors separate by 5-10 m on the
ground with an accuracy of a few microns. The servo loop stabilizes the mirror
of metrology under the helium balloon with an accuracy better than 5 mm while
it moves horizontally by 30 cm in open loop by 10-20 km/h of wind. We have
obtained the white fringes of metrology; i.e., the three mirrors are aligned
(cospherized) with an accuracy of {\approx} 1 micron. We show data proving the
stability of fringes over 15 minutes, therefore providing evidence that the
mechanical parts are stabilized within a few microns. This is an important step
that demonstrates the feasibility of building a diluted telescope using cables
strained between cliffs or under a balloon. Carlina, like the MMT or LBT, could
be one of the first members of a new class of telescopes named diluted
telescopes.Comment: 18 pages, 17 figures, A&A, accepte
Wavefront outer scale deduced from interferometric dispersed fringes
Astronomy and Astrophysics, v. 448, p. 1225-1234, 2006. http://dx.doi.org/10.1051/0004-6361:20052806International audienc
High resolution spectroscopy for Cepheids distance determination. V. Impact of the cross-correlation method on the p-factor and the gamma-velocities
The cross correlation method (hereafter CC) is widely used to derive the
radial velocity curve of Cepheids when the signal to noise of the spectra is
low. However, if it is used with the wrong projection factor, it might
introduce some biases in the Baade-Wesselink (hereafter BW) methods of
determining the distance of Cepheids. In addition, it might affect the average
value of the radial velocity curve (or gamma-velocity) important for Galactic
structure studies. We aim to derive a period-projection factor relation
(hereafter Pp) appropriate to be used together with the CC method. Moreover, we
investigate whether the CC method can explain the misunderstood previous
calculation of the K-term of Cepheids. We observed eight galactic Cepheids with
the HARPS spectrograph. For each star, we derive an interpolated CC radial
velocity curve using the HARPS pipeline. The amplitudes of these curves are
used to determine the correction to be applied to the semi-theoretical
projection factor derived in Nardetto et al. (2007). Their average value (or
gamma-velocity) are also compared to the center-of-mass velocities derived in
Nardetto et al. (2008). The correction in amplitudes allows us to derive a new
Pp relation: p = [-0.08+-0.05] log P +[1.31+-0.06]. We also find a negligible
wavelength dependence (over the optical range) of the Pp relation. We finally
show that the gamma-velocity derived from the CC method is systematically
blue-shifted by about 1.0 +- 0.2km/s compared to the center-of-mass velocity of
the star. An additional blue-shift of 1.0km/s is thus needed to totally explain
the previous calculation of the K-term of Cepheids (around 2km/s). The new Pp
relation we derived is a solid tool for the distance scale calibration
(abridged).Comment: Comments : 9 pages, 3 Postscript figures, 5 Tables, accepted for
publication in A&
The compact Hα emitting regions of the Herbig Ae/Be stars HD 179218 and HD 141569 from CHARA spectro-interferometry
This work presents CHARA/VEGA Hα spectro-interferometry (R ∼ 6000, and λ/2B ∼ 1 mas) of HD 179218 and HD 141569, doubling the sample of Herbig Ae/Be (HAeBe) stars for which this type of observations is available so far. The observed Hα emission is spatially unresolved, indicating that the size of the Hα emitting region is smaller than ∼0.21 and 0.12 au for HD 179218 and HD 141529 (∼15 and 16 R*, respectively). This is smaller than for the two other HAeBes previously observed with the same instrumentation. Two different scenarios have been explored in order to explain the compact line emitting regions. A hot, several thousand K, blackbody disc is consistent with the observations of HD 179218 and HD 141569. Magnetospheric accretion (MA) is able to reproduce the bulk of the Hα emission shown by HD 179218, confirming previous estimates from MA shock modelling with a mass accretion rate of 10−8 M⊙ yr−1, and an inclination to the line of sight between 30∘ and 50∘. The Hα profile of HD 141569 cannot be fitted from MA due to the high rotational velocity of this object. Putting the CHARA sample together, a variety of scenarios is required to explain the Hα emission in HAeBe stars – compact or extended, discs, accretion, and winds – in agreement with previous Brγ spectro-interferometric observations
- …
