604 research outputs found

    Twisting Flux Tubes as a cause of Micro-Flaring Activity

    Full text link
    High-cadence optical observations of an H-alpha blue-wing bright point near solar AR NOAA 10794 are presented. The data were obtained with the Dunn Solar Telescope at the National Solar Observatory/Sacramento Peak using a newly developed camera system, the Rapid Dual Imager. Wavelet analysis is undertaken to search for intensity-related oscillatory signatures, and periodicities ranging from 15 to 370 s are found with significance levels exceeding 95%. During two separate microflaring events, oscillation sites surrounding the bright point are observed to twist. We relate the twisting of the oscillation sites to the twisting of physical flux tubes, thus giving rise to reconnection phenomena. We derive an average twist velocity of 8.1 km/s and detect a peak in the emitted flux between twist angles of 180 and 230 degrees.Comment: 8 pages, 10 figure

    Examining the role of Scotland’s telephone advice service (NHS 24) for managing health in the community : analysis of routinely collected NHS 24 data

    Get PDF
    Date of Acceptance: 15/06/2015 Funding This work was supported by the Chief Scientist Office, ScottishExecutive (grant no. CZH/4/692). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.Peer reviewedPublisher PD

    Discovery of spatial periodicities in a coronal loop using automated edge-tracking algorithms

    Get PDF
    A new method for automated coronal loop tracking, in both spatial and temporal domains, is presented. Applying this technique to TRACE data, obtained using the 171 Å filter on 1998 July 14, we detect a coronal loop undergoing a 270 s kink-mode oscillation, as previously found by Aschwanden et al. However, we also detect flare-induced, and previously unnoticed, spatial periodicities on a scale of 3500 km, which occur along the coronal loop edge. Furthermore, we establish a reduction in oscillatory power for these spatial periodicities of 45% over a 222 s interval. We relate the reduction in detected oscillatory power to the physical damping of these loop-top oscillations

    The Influence of Magnetic Field on Oscillations in the Solar Chromosphere

    Get PDF
    Two sequences of solar images obtained by the Transition Region and Coronal Explorer in three UV passbands are studied using wavelet and Fourier analysis and compared to the photospheric magnetic flux measured by the Michelson Doppler Interferometer on the Solar Heliospheric Observatory to study wave behaviour in differing magnetic environments. Wavelet periods show deviations from the theoretical cutoff value and are interpreted in terms of inclined fields. The variation of wave speeds indicates that a transition from dominant fast-magnetoacoustic waves to slow modes is observed when moving from network into plage and umbrae. This implies preferential transmission of slow modes into the upper atmosphere, where they may lead to heating or be detected in coronal loops and plumes.Comment: 8 pages, 6 figures (4 colour online only), accepted for publication in The Astrophysical Journa

    On factorizing FF-matrices in Y(sln)Y(sl_n) and Uq(sln^)U_q(\hat{sl_n}) spin chains

    Full text link
    We consider quantum spin chains arising from NN-fold tensor products of the fundamental evaluation representations of Y(sln)Y(sl_n) and Uq(sln^)U_q(\hat{sl_n}). Using the partial FF-matrix formalism from the seminal work of Maillet and Sanchez de Santos, we derive a completely factorized expression for the FF-matrix of such models and prove its equivalence to the expression obtained by Albert, Boos, Flume and Ruhlig. A new relation between the FF-matrices and the Bethe eigenvectors of these spin chains is given.Comment: 30 page

    Numerical Simulations of Magnetoacoustic-Gravity Waves in the Solar Atmosphere

    Get PDF
    We investigate the excitation of magnetoacoustic-gravity waves generated from localized pulses in the gas pressure as well as in vertical component of velocity. These pulses are initially launched at the top of the solar photosphere that is permeated by a weak magnetic field. We investigate three different configurations of the background magnetic field lines: horizontal, vertical and oblique to the gravitational force. We numerically model magnetoacoustic-gravity waves by implementing a realistic (VAL-C) model of solar temperature. We solve two-dimensional ideal magnetohydrodynamic equations numerically with the use of the FLASH code to simulate the dynamics of the lower solar atmosphere. The initial pulses result in shocks at higher altitudes. Our numerical simulations reveal that a small-amplitude initial pulse can produce magnetoacoustic-gravity waves, which are later reflected from the transition region due to the large temperature gradient. The atmospheric cavities in the lower solar atmosphere are found to be the ideal places that may act as a resonator for various oscillations, including their trapping and leakage into the higher atmosphere. Our numerical simulations successfully model the excitation of such wave modes, their reflection and trapping, as well as the associated plasma dynamics

    Network oscillations at the boundary of an equatorial coronal hole

    Full text link
    We investigate intensity oscillations observed simultaneously in the quiet chromosphere and in the corona, above an enhanced network area at the boundary of an equatorial coronal hole. A Fourier analysis is applied to a sequence of images observed in the 171 A and 1600 A passbands of TRACE. Four interesting features above the magnetic network are further investigated by using a wavelet analysis. Our results reveal that, in both the 171 A and 1600 A passbands, oscillations above the magnetic network show a lack of power at high frequencies (5.0-8.3 mHz), and a significant power at low (1.3-2.0 mHz) and intermediate frequencies (2.6-4.0 mHz). The global 5-min oscillation is clearly present in the 4 analyzed features when seen in the 1600 A passband, and is also found with enhanced power in feature 1 (leg of a large coronal loop) and feature 2 (legs of a coronal bright point loop) when seen in the 171 A passband. Two features above an enhanced network element (feature 3 and feature 4) show repeated propagating behaviors with a dominant period of 10 min and 5 min, respectively. We suggest these oscillations are likely to be slow magneto-acoustic waves propagating along inclined magnetic field lines, from the lower solar atmosphere into the corona. The energy flux carried by these waves is estimated of the order of 40 erg cm\^{-2} s\^{-1} for the 171 A passband and is far lower than the energy required to heat the quiet corona. For the 1600 A passband, the energy flux is about 1.4*10^6 erg cm\^{-2} s\^{-1}, which is about one third of the required energy budget for the chromosphere.Comment: 7 pages, 8 figure

    Deceleration and Dispersion of Large-scale Coronal Bright Fronts

    Full text link
    One of the most dramatic manifestations of solar activity are large-scale coronal bright fronts (CBFs) observed in extreme ultraviolet (EUV) images of the solar atmosphere. To date, the energetics and kinematics of CBFs remain poorly understood, due to the low image cadence and sensitivity of previous EUV imagers and the limited methods used to extract the features. In this paper, the trajectory and morphology of CBFs was determined in order to investigate the varying properties of a sample of CBFs, including their kinematics and pulse shape, dispersion, and dissipation. We have developed a semi-automatic intensity profiling technique to extract the morphology and accurate positions of CBFs in 2.5-10 min cadence images from STEREO/EUVI. The technique was applied to sequences of 171A and 195A images from STEREO/EUVI in order to measure the wave properties of four separate CBF events. Following launch at velocities of ~240-450kms^{-1} each of the four events studied showed significant negative acceleration ranging from ~ -290 to -60ms^{-2}. The CBF spatial and temporal widths were found to increase from ~50 Mm to ~200 Mm and ~100 s to ~1500 s respectively, suggesting that they are dispersive in nature. The variation in position-angle averaged pulse-integrated intensity with propagation shows no clear trend across the four events studied. These results are most consistent with CBFs being dispersive magnetoacoustic waves.Comment: 15 pages, 18 figure

    High-Frequency Oscillations in a Solar Active Region observed with the Rapid Dual Imager

    Full text link
    High-cadence, synchronized, multiwavelength optical observations of a solar active region (NOAA 10794) are presented. The data were obtained with the Dunn Solar Telescope at the National Solar Observatory/Sacramento Peak using a newly developed camera system : the Rapid Dual Imager. Wavelet analysis is undertaken to search for intensity related oscillatory signatures, and periodicities ranging from 20 to 370 s are found with significance levels exceeding 95%. Observations in the H-alpha blue wing show more penumbral oscillatory phenomena when compared to simultaneous G-band observations. The H-alpha oscillations are interpreted as the signatures of plasma motions with a mean velocity of 20 km/s. The strong oscillatory power over H-alpha blue-wing and G-band penumbral bright grains is an indication of the Evershed flow with frequencies higher than previously reported.Comment: 9 pages, 9 figure

    Solar feature tracking in both spatial and temporal domains

    Get PDF
    A new method for automated coronal loop tracking, in both spatial and temporal domains, is presented. The reliability of this technique was tested with TRACE 171A observations. The application of this technique to a flare-induced kink-mode oscillation, revealed a 3500 km spatial periodicity which occur along the loop edge. We establish a reduction in oscillatory power, for these spatial periodicities, of 45% over a 322 s interval. We relate the reduction in oscillatory power to the physical damping of these loop-top oscillations
    corecore