160 research outputs found
Refractive Index of Humid Air in the Infrared: Model Fits
The theory of summation of electromagnetic line transitions is used to
tabulate the Taylor expansion of the refractive index of humid air over the
basic independent parameters (temperature, pressure, humidity, wavelength) in
five separate infrared regions from the H to the Q band at a fixed percentage
of Carbon Dioxide. These are least-squares fits to raw, highly resolved spectra
for a set of temperatures from 10 to 25 C, a set of pressures from 500 to 1023
hPa, and a set of relative humidities from 5 to 60%. These choices reflect the
prospective application to characterize ambient air at mountain altitudes of
astronomical telescopes.Comment: Corrected exponents of c0ref, c1ref and c1p in Table
A new concept for the combination of optical interferometers and high-resolution spectrographs
The combination of high spatial and spectral resolution in optical astronomy
enables new observational approaches to many open problems in stellar and
circumstellar astrophysics. However, constructing a high-resolution
spectrograph for an interferometer is a costly and time-intensive undertaking.
Our aim is to show that, by coupling existing high-resolution spectrographs to
existing interferometers, one could observe in the domain of high spectral and
spatial resolution, and avoid the construction of a new complex and expensive
instrument. We investigate in this article the different challenges which arise
from combining an interferometer with a high-resolution spectrograph. The
requirements for the different sub-systems are determined, with special
attention given to the problems of fringe tracking and dispersion. A concept
study for the combination of the VLTI (Very Large Telescope Interferometer)
with UVES (UV-Visual Echelle Spectrograph) is carried out, and several other
specific instrument pairings are discussed. We show that the proposed
combination of an interferometer with a high-resolution spectrograph is indeed
feasible with current technology, for a fraction of the cost of building a
whole new spectrograph. The impact on the existing instruments and their
ongoing programs would be minimal.Comment: 27 pages, 9 figures, Experimental Astronomy; v2: accepted versio
MATISSE, perspective of imaging in the mid-infrared at the VLTI
International audienceMATISSE is foreseen as a mid-infrared spectro-interferometer combining the beams of up to four UTs/ATs of the Very Large Telescope Interferometer (VLTI) of the European Southern Observatory. The related science case study demonstrates the enormous capability of a new generation mid-infrared beam combiner. MATISSE will constitute an evolution of the two-beam interferometric instrument MIDI. MIDI is a very successful instrument which offers a perfect combination of spectral and angular resolution. New characteristics present in MATISSE will give access to the mapping and the distribution of the material (typically dust) in the circumstellar environments by using a wide mid-infrared band coverage extended to L, M and N spectral bands. The four beam combination of MATISSE provides an efficient UV-coverage : 6 visibility points are measured in one set and 4 closure phase relations which can provide aperture synthesis images in the mid-infrared spectral regime
Probing embryonic tissue mechanics with laser hole-drilling
We use laser hole-drilling to assess the mechanics of an embryonic epithelium
during development - in vivo and with subcellular resolution. We ablate a
subcellular cylindrical hole clean through the epithelium, and track the
subsequent recoil of adjacent cells (on ms time scales). We investigate dorsal
closure in the fruit fly with emphasis on apical constriction of amnioserosa
cells. The mechanical behavior of this epithelium falls between that of a
continuous sheet and a 2D cellular foam (a network of tensile interfaces).
Tensile stress is carried both by cell-cell interfaces and by the cells' apical
actin networks. Our results show that stress is slightly concentrated along
interfaces (1.6-fold), but only in early closure. Furthermore, closure is
marked by a decrease in the recoil power-law exponent - implying a transition
to a more solid-like tissue. We use the site- and stage-dependence of the
recoil kinetics to constrain how the cellular mechanics change during closure.
We apply these results to test extant computational models.Comment: 23 pages with 9 figures (require color
The CARMENES search for exoplanets around M dwarfs High-resolution optical and near-infrared spectroscopy of 324 survey stars
The CARMENES radial velocity (RV) survey is observing 324 M dwarfs to search for any orbiting planets. In this paper, we present the survey sample by publishing one CARMENES spectrum for each M dwarf. These spectra cover the wavelength range 520–1710 nm at a resolution of at least R >80 000, and we measure its RV, Hα emission, and projected rotation velocity. We present an atlas of high-resolution M-dwarf spectra and compare the spectra to atmospheric models. To quantify the RV precision that can be achieved in low-mass stars over the CARMENES wavelength range, we analyze our empirical information on the RV precision from more than 6500 observations. We compare our high-resolution M-dwarf spectra to atmospheric models where we determine the spectroscopic RV information content, Q, and signal-to-noise ratio. We find that for all M-type dwarfs, the highest RV precision can be reached in the wavelength range 700–900 nm. Observations at longer wavelengths are equally precise only at the very latest spectral types (M8 and M9). We demonstrate that in this spectroscopic range, the large amount of absorption features compensates for the intrinsic faintness of an M7 star. To reach an RV precision of 1 m s−1 in very low mass M dwarfs at longer wavelengths likely requires the use of a 10 m class telescope. For spectral types M6 and earlier, the combination of a red visual and a near-infrared spectrograph is ideal to search for low-mass planets and to distinguish between planets and stellar variability. At a 4 m class telescope, an instrument like CARMENES has the potential to push the RV precision well below the typical jitter level of 3–4 m s−1
The CARMENES search for exoplanets around M dwarfs High-resolution optical and near-infrared spectroscopy of 324 survey stars
The CARMENES radial velocity (RV) survey is observing 324 M dwarfs to search for any orbiting planets. In this paper, we present the survey sample by publishing one CARMENES spectrum for each M dwarf. These spectra cover the wavelength range 520–1710 nm at a resolution of at least R >80 000, and we measure its RV, Hα emission, and projected rotation velocity. We present an atlas of high-resolution M-dwarf spectra and compare the spectra to atmospheric models. To quantify the RV precision that can be achieved in low-mass stars over the CARMENES wavelength range, we analyze our empirical information on the RV precision from more than 6500 observations. We compare our high-resolution M-dwarf spectra to atmospheric models where we determine the spectroscopic RV information content, Q, and signal-to-noise ratio. We find that for all M-type dwarfs, the highest RV precision can be reached in the wavelength range 700–900 nm. Observations at longer wavelengths are equally precise only at the very latest spectral types (M8 and M9). We demonstrate that in this spectroscopic range, the large amount of absorption features compensates for the intrinsic faintness of an M7 star. To reach an RV precision of 1 m s−1 in very low mass M dwarfs at longer wavelengths likely requires the use of a 10 m class telescope. For spectral types M6 and earlier, the combination of a red visual and a near-infrared spectrograph is ideal to search for low-mass planets and to distinguish between planets and stellar variability. At a 4 m class telescope, an instrument like CARMENES has the potential to push the RV precision well below the typical jitter level of 3–4 m s−1
- …
