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Abstract

Spectrum sensing is a crucial component of opportunistic spectrum access schemes, which aim at improving
spectrum utilization by allowing for the reuse of idle licensed spectrum. Sensing a spectral band before using it makes
sure the legitimate users are not disturbed. To that end, a number of different spectrum sensing method have been
developed in the literature. Cyclostationary detection is a particular sensing approach that takes use of the built-in
periodicities characteristic to most man-made signals. It offers a compromise between achievable performance and
the amount of prior information needed. However, it often requires a significant amount of data in order to provide a
reliable estimate of the cyclic autocorrelation (CA) function. In this work, we take advantage of the inherent sparsity of
the cyclic spectrum in order to estimate CA from a low number of linear measurements and enable blind
cyclostationary spectrum sensing. Particularly, we propose two compressive spectrum sensing algorithms that exploit
further prior information on the CA structure. In the first one, we make use of the joint sparsity of the CA vectors with
regard to the time delay, while in the second one, we introduce structure dictionary to enhance the reconstruction
performance. Furthermore, we extend a statistical test for cyclostationarity to accommodate sparse cyclic spectra. Our
numerical results demonstrate that the new methods achieve a near constant false alarm rate behavior in contrast to
earlier approaches from the literature.
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1 Introduction
The scarcity of radio spectrum constitutes a major
roadblock to current and future innovation in wireless
communications. To alleviate this problem, it has been
proposed to make spectral resources, which are currently
underutilized, available for reuse under a paradigm that
goes by the name of opportunistic spectrum access (OSA)
[1]. Spectrum sensing is one of its core technologies. It
allows an unlicensed transceiver, a so-called secondary
user (SU), to access a licensed spectral band without inter-
fering with the owner of the band’s license, the so-called
primary user (PU). The fundamental task in spectrum
sensing is to decide between two hypotheses, the first of
which states that the spectral band under investigation
is free (H0), while the second asserts that it is occupied
(H1). Considering the baseband signal x(t) observed at
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a secondary system receiver, the two hypotheses can be
written as

H0 : x(t) = η(t),
H1 : x(t) = s′(t) + η(t), (1)

where η(t) denotes receiver noise and s′(t) stands for a PU
signal after propagation effects.
A number of spectrum sensing algorithms have been

proposed in the literature [2–4]. Broadly speaking, they
can be divided into three major types, namely, energy
detection, stochastic feature detection, and matched filter
detection, where different types require different amounts
of prior knowledge about the PU signal. While matched
filter ([5], Ch. 4.3) detectors require the knowledge of
the exact waveform of at least a part of the PU signal,
energy detection [6] does not require any prior knowl-
edge. Feature detectors are an in-between as they only
make assumptions about structural or statistical proper-
ties of the signal. One of the stochastic features which
lets an SU receiver discriminate between pure station-
ary noise (H0) and a communication signal contaminated
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with noise (H1) is cyclostationarity. In contrast to pure
stationary noise, most man-made signals vary periodically
with time [7] and can thus be characterized as cyclo-
stationary. Although the data contained in a modulated
signal may be a purely stationary random process, the
coupling with sine wave carriers, pulse trains, repeating,
spreading, hopping sequences, and cyclic prefixes going
along with its modulation causes a built-in periodicity [8].
The use of cyclostationarity for the purpose of spectrum

sensing has been investigated from a variety of perspec-
tives ranging from single node signal detection [9–16]
to collaborative approaches that take use of the spatial
diversity [17, 18]. One of the particularly well-known
algorithms for cyclostationary spectrum sensing is the
so-called time-domain test (TDT) as introduced in [9].
The test can decide between the presence and absence
of cyclostationarity for a pre-specified potential cycle fre-
quency α. It operates on the cyclic autocorrelation (CA),
which, given an observed signal x(t), is defined as [7]

Rα
x (τ ) = lim

T→∞
1
T

T/2∫

−T/2

x(t + τ/2)x∗(t − τ/2)e−j2παtdt

(2)

for a potential cycle frequency α and a delay τ . For purely
stationary signals, Rα

x (τ ) = 0 for all α �= 0, while for cyclo-
stationary signals, Rα

x (τ ) �= 0 for some α �= 0. The α with
non-zero CA coefficients are called cycle frequencies. The
set of cycle frequencies caused by one of potentially multi-
ple incommensurate second-order periodicities in a cyclo-
stationary signal comprises the periodicity’s fundamental
cycle frequency (the reciprocal of the fundamental period)
as well as its harmonics. Given the above information, we
can rewrite the hypothesis test (1) as

H0 : ∀{α ∈ R|α �= 0} : Rα
x (τ ) = 0,

H1 : ∃{α ∈ R|α �= 0} : Rα
x (τ ) �= 0. (3)

It is important to note that practically, instead of the
statistical CA (2), one normally operates on the sample
CA obtained from a limited number of signal samples.
The coefficients of the sample CA are not constant but
rather follow different probability distributions, depend-
ing on whether H0 or H1 is true. To account for this, the
hypothesis test (3) is modified by considering different test
statistic under H0 and H1. As a result, the TDT provides
a typical constant false alarm rate (CFAR) performance.
Returning to (3), we note that the CA is zero on its whole

support except the set of cycle frequencies and α = 0.
Therefore, it can be called sparse. The exploitation of spar-
sity in signal processing has a long history [19]. The recent
years, however, have seen a vastly accelerated develop-
ment of the field resulting in a new sampling paradigm

called compressive sampling (CS) [20, 21]. It postulates
that sparse or compressible signals, i.e., the signals that
can be represented or well approximated by only a few
non-zero coefficients in some domain, can be sampled
and recovered from fewer number of measurements than
traditionally required. A crucial observation here is that
one can design an effective measurement strategy that is
governed by the amount of the signals’ information con-
tent, rather than its ambient dimension. To date, there
is a large amount of powerful algorithms available that
solve sparse recovery problems in the CS context ranging
from optimization approaches to classical pursuits such
as the orthogonal matching pursuit (OMP) [22] and more
specialized algorithms such as the compressive sampling
matching pursuit (CoSaMP) [23] for instance.
Multiple contributions have been made in the field

of compressive cyclostationary spectrum sensing. The
authors of [24] for instance formulate the estimation of
the cyclic autocorrelation as a sparse recovery problem,
which they solve using the OMP [22]. Based on the
sparse estimate of the CA, they propose two detection
methods that exploit different CA properties. The first
one, called slot comparison method (SCM), compares the
biggest CA components OMP finds in two consecutive
blocks of samples. If for both blocks, the same discrete
cycle frequencies are chosen, H1 is selected; otherwise,
H0 is selected. The second detection algorithm is called
symmetry method (SM). It exploits the fact, that for cer-
tain types of signals, the CA is symmetric around the
direct current (DC) component. Although both of them
present blind detectors meaning that they operate with-
out prior knowledge of the cycle frequencies present in
the signal, they do not allow for a CFAR performance,
which is considered a desired detector feature [4]. Instead
of the CA, the authors of [25] use the spectral corre-
lation (SC), which is the Fourier transform of the CA
over τ , for detecting multiple transmitters in a wideband
signal using compressive sampling. In order to estimate
the SC from compressed samples via CS, they estab-
lished a direct linear relation between the compressed
samples and the SC. Based on [25], the authors of [26]
derive a method for recovering the SC from sub-Nyquist
samples using a reduced complexity approach, for which
they provide a closed-form solution. In [27], the modu-
lated wideband converter (MWC) [28] is used to obtain
the SC from sub-Nyquist samples to then apply cyclo-
stationarity detection. Furthermore, it has been recently
shown that under certain conditions, the CA can be
efficiently recovered from a low number of samples
even without enforcing the sparsity property [29–31].
This can be done by exploiting cross-correlations between
different outputs of the compressive sampler. The main
drawback of the aforementioned works is that provid-
ing the estimate of the entire cyclic spectrum, they still
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require the knowledge of the cycle frequencies for the
detection step.
In this work, we employ a composite approach that

combines the sparse recovery of CA from its compressive
measurements for blind cycle frequency estimation with
a CFAR TDT detection. This said the contribution of this
paper is manifold. We propose two novel sparsity-aided
CA estimation algorithms, both of which exploit further
prior information about the CA in addition to its sparsity:
the simultaneous OMP-based (SOber) and the dictionary
assisted (Dice) compressive CA estimator. The first one
exploits the joint sparsity of the CA vectors with regard
to the time delay in order to recover the CA matrix for all
delays simultaneously, while the second one takes advan-
tage of the signal-induced structure of the CA by intro-
ducing structure dictionaries into the recovery process.
In order to evaluate the performance of the proposed CA
estimators, we derive a closed-form expression of the CA
of sampled linearly modulated signals with rectangular
pulse shape. Furthermore, we show how this expression
can be used as prior information in the dictionary assisted
approach. Note that the use of sparse recovery in the novel
CA estimation approaches results in the automatic detec-
tion of signal’s cycle frequencies. This in turn allows blind
spectrum sensing by eliminating the integral need of the
classical TDT for the perfect knowledge of the said cycle
frequencies. However, the resulting sparse structure of the
compressive CA estimates does not allow for the applica-
tion of the traditional TDT since the noise statistics are
missing. To compensate for this phenomenon, we develop
a modified TDT and thus enable blind compressive cyclo-
stationary spectrum sensing. Numerical tests show that
the proposed method achieves a near CFAR behavior.
The remainder of this paper is structured as follows.

Section 2.1 introduces the signal model and presents the
classical method for CA estimation, while Section 2.2
presents the time-domain test based on the classical CA
estimation. A CA estimator based on joint sparsity of mul-
tiple vectors is introduced in Section 3 and the CA esti-
mator exploiting additional prior knowledge is described
in Section 4. An extension of the TDT to accommo-
date sparse CA estimates is developed in Section 5.
The numerical evaluation of the proposed estimation
and detection approaches as well as the interpretation
of the results is given in Section 6. Section 7 concludes
the paper.

2 Cyclostationary spectrum sensing
2.1 Systemmodel and CA estimation
Consider a secondary system receiver that needs to decide
whether a certain spectral band is occupied or free. It sam-
ples the baseband signal x(t) uniformly with a sampling
period Te. This results in the vector of discrete samples
xt0 ∈ C

N , where

xt0 = [x (t0), x (t0 + Te), . . . , x (t0 + (N − 1)Te)]T .
(4)

We assume that the vector xt0 is discrete and zero mean,
and due to the nature of man-made signals, it represents
an (almost [32], Ch. 1.3) cyclostationary process [9]. The
presence of stochastic periodicity in the samples and thus
the presence of a man-made signal can be revealed by
applying a detection algorithm such as the TDT to the
CA of the samples. There are different ways of obtaining
the CA from the baseband samples, one of which is the
following (classical) estimator

R̂a
x,t0(ν) = 1

N

N−1−ν∑
n=0

x (t0 + nTe)x∗ (t0 + (n + ν)Te)

× e−j2π a
N ne−jπ a

N ν . (5)

Evaluating this function results in the CA coefficient
for the cycle frequency α = a

NTe
and the time delay

τ = νTe, where a stands for the discrete cycle frequency
and ν denotes the discrete time delay. Note that the fac-
tor e−jπ a

N ν remains constant throughout the sum. It is a
phase shift necessary to maintain compatibility with the
symmetric CA (2). The estimator (5) is biased but exhibits
a smaller estimation variance than an unbiased one [9].
We define r̂νx as an N length CA vector whose nth

element is R̂n
x,t0(ν), i.e.,

r̂νx =
[
R̂0
x,t0(ν), . . . , R̂N−1

x,t0 (ν)
]T

. (6)

Subsequently, we re-write the estimation of the CA vec-
tor as a matrix-vector product. To do so, we need the (N
element) delay product with time delay τ = νTe, which is
given by

yν
N = xt0 ◦ x∗

t0+νTe , (7)

where ◦ denotes component-wise multiplication. Note
that since the receiver only takes N samples, x∗

t0+νTe
is

zero-padded at the end while yν
N is a vector of length N.

The CA vector is now given by

r̂νx = 1
N
Fyν

N , (8)

where F denotes the (N × N) discrete Fourier transform
(DFT) matrix. The N × nν CA matrix for time delays
ν1Te, . . . , νnνTe is given by

R̂x = [
r̂ν1x , . . . , r̂νnν

x
] = 1

N
FYN , (9)

with YN = [
yν1
N , . . . , yνnν

N
]∈ C

N×nν .

2.2 The time-domain test (TDT) for cyclostationarity
Given the statistical CA, one could decide between H0
and H1 by testing it for being non-zero at the signal’s
inherent cycle frequencies according to (3). However, as



Bollig et al. EURASIP Journal onWireless Communications and Networking  (2017) 2017:135 Page 4 of 13

mentioned in Section 1, instead of the statistical CA, we
only have access to its estimation, the sample CA (which
asymptotically converges to the statistical CA). This hin-
ders the direct applicability of (3) for signal detection as
coefficients of the sample CA are not constant anymore.
In the seminal work [9], the probability distributions that
the sample CA coefficients follow under H0 or H1 have
been identified and a test for cyclostationarity based on
this knowledge has been designed. The test is briefly
described in the following.
Consider the 2nν × 1 vector

r̂xx∗(a0) =
[
Re

{
R̂x [a0, ν1]

}
, . . . ,Re

{
R̂x
[
a0, νnν

]}
,

Im

{
R̂x [a0, ν1]

}
, . . . , Im

{
R̂x
[
a0, νnν

]}]T
,

(10)

which represents the concatenation of the real and the
imaginary part of the row of R̂x corresponding to the dis-
crete cycle frequency a0. The frequency a0 is the cycle
frequency of interest, i. e., the one for the presence of
which we want to test the signal. Given this vector, we can
formulate the following non-asymptotic hypotheses

H0 : r̂xx∗(a0) = εxx∗(a0),
H1 : r̂xx∗(a0) = rxx∗(a0) + εxx∗(a0),

(11)

where rxx∗(a0) is the deterministic but unknown asymp-
totic counterpart of r̂xx∗(a0) and εxx∗(a0) is the estima-
tion error. Note that in contrast to the hypotheses from
Eq. (3), this formulation considers the presence of cyclo-
stationarity in the received signal for one fixed cycle
frequency a0.
Since rxx∗(a0) is non-random, the distribution of

r̂xx∗(a0) underH0 andH1 only differs in mean. As shown
in [9], the estimation error εxx∗(a0) asymptotically follows
a Gaussian distribution, i. e.,

lim
N→∞

√
Nεxx∗(a0)

D=N (0,�xx∗(a0)), (12)

where �xx∗(a0) is the statistical covariance matrix of
r̂xx∗(a0) and D= denotes convergence in distribution.
The 2nν × 2nν covariance matrix �xx∗(a0) can be
computed as [9]

�xx∗(a0) =
⎡
⎣ Re

{
Q+Q∗

2

}
Im

{
Q−Q∗

2

}

Im

{
Q+Q∗

2

}
Re

{
Q∗−Q

2

}
⎤
⎦ , (13)

where the (m, n)th entries of the nν × nν matrices Q and
Q∗ are given by

Q(m, n) = Syνm
N yνn

N
(2a0, a0), and (14)

Q∗(m, n) = S∗
yνm
N yνn

N
(0,−a0) (15)

respectively. The term Syνm
N yνn

N
(·, ·) denotes the unconju-

gated, while the term S∗
yνm
N yνn

N
(·, ·) denotes the conjugated

cyclic spectrum of a signal. One way to estimate these
is to determine the following frequency-smoothed peri-
odograms:

Ŝyνm
N yνn

N
(2a0, a0) = 1

NL

L−1
2∑

s=− L−1
2

W (s)

× R̂x[ a0 − s, νn] R̂x[ a0 + s, νm] (16)

Ŝ∗
yνm
N yνn

N
(0,−a0) = 1

NL

L−1
2∑

s=− L−1
2

W (s)

× R̂∗
x[ a0 + s, νn] R̂x[ a0 + s, νm] , (17)

where W is a normalized spectral window of odd length
L. Looking at the Eqs. (16) and (17), it becomes clear why
the cyclic spectrum is often referred to as the spectral
correlation.
Given the estimated quantities described above, the fol-

lowing generalized likelihood ratio (GLR) test statistic can
be derived [17]

Txx∗ = N r̂xx∗(a0)�̂−1
xx∗(a0)r̂Txx∗(a0). (18)

The test statistic can be interpreted as a normal-
ized energy. The inverse of the covariance matrix scales
r̂xx∗(a0) such that under H0, its entries follow a standard
normal distribution. Thus, under H0, the test statistic
asymptotically follows a central chi-squared distribution
with 2nτ degrees of freedom i. e., lim

N→∞Txx∗ D= χ2
2nν

,
while under H1, the test statistic asymptotically follows a
non-central chi-squared distribution with unknown non-
centrality parameter λ, i. e., lim

N→∞Txx∗ D= χ2
2nν

(λ). Based
on the above test statistic, we can design a CFAR detec-
tor with some false alarm rate Pfa by finding the corre-
sponding decision threshold in the χ2

2nν
tables. We cannot

design a test based on a desired detection rate Pd since
although rxx∗(a0) is deterministic, it depends on the type
of signal emitted by the transmitter as well as the sig-
nal to noise ratio (SNR) at the receiver, both of which are
assumed to be unknown.
The classical approach for cyclostationary spectrum

sensing is to apply the TDT to the CA estimate from (5).
However, to do so, one needs to know which cycle fre-
quency to test beforehand, which eliminates the possibil-
ity of true blind spectrum sensing. One could sequentially
test the received signal for all possible cycle frequen-
cies. However, with high probability, the estimation noise
at some cycle frequency would have a value above the
decision threshold, leading to a false alarm.
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3 Sparsity-aided CA estimation: simultaneous
OMP-based estimator

As discussed in Section 1, for most man-made signals
the CA is (asymptotically) sparsely occupied, containing
spikes only at the DC component as well as the cycle
frequencies of inherent signal periodicities and their har-
monics. In this section, we take advantage of this inherent
sparsity and cast the CA estimation as a joint sparse
recovery problem. Since this method is able to detect
the CA’s support, it removes the traditional approach’s
requirement of knowing the cycle frequencies before-
hand, enabling thus blind cyclostationarity-based spec-
trum sensing possible.
We begin by rewriting Eq. (9) as

YN = NF−1R̂x, (19)

where F−1 is the inverse discrete Fourier transform
(IDFT) matrix. Now, consider anm × N matrixM, which
consists of a selection of m rows of the N × N iden-
tity matrix IN . It represents the undersampling operation.
Applying M to xt0 , we obtain an m × 1 vector of com-
pressive samples1 x̄t0 = Mxt0 . Now, we can calculate an
m element delay product with time delays τ = νiTe, i.e.,
yν
m = x̄t0◦x̄∗

t0+νTe
. Stacking all yν

m together into onematrix
Ym, we finally obtain

Ym = MYN = NMF−1R̂x, (20)

where Ym contains a selection of m coefficients of the
delay products for different delays νiTe. Note that νi ∈
[0,N − 1] are chosen such that x̄t0 + νiTe is non-empty.
We nowwant to recover R̂x from Ym by solving the under-
determined inverse problem (20). To do so, we exploit our
knowledge about the CA’s sparsity.
The straightforward solution would be to solve the fol-

lowing optimization problem

min
∥∥∥vec

{
R̂x
}∥∥∥


0
s.t. Ym = NMF−1R̂x,

(21)

where ‖·‖
0 denotes the 
0 “norm” [20], which is the num-
ber of non-zero entries in a vector, and vec{·} stands for
the vectorization of a matrix, i. e., the concatenation of its
columns to a single vector. Eq. 21 is known to be a non-
convex combinatorial problem [20]. One way to solve it
within a practically feasible amount of time is to substi-
tute the 
0-“norm” by its tightest convex relaxation, the 
1
norm.With high probability, this produces the same result
since for most large underdetermined systems of linear
equations, the minimal 
1-norm solution is also the spars-
est solution [33]. Another way of solving (21) efficiently is
by applying one of the many greedy sparse recovery algo-
rithms that have been developed in the field of CS, such
as, e.g., orthogonal matching pursuit (OMP) [22].

OMP is a greedy algorithm that iteratively determines
a vector’s support from an underdetermined system of
linear equations and subsequently recovers the vector
by solving a least-square problem. Using it, we could
solve (21) for each column of R̂x individually (as in [24]),
i. e., we could solve

min
∥∥r̂νx

∥∥

0

s.t. yν
m = NMF−1r̂νx ,

(22)

for each ν. Instead, we notice that the vectors r̂νx
∣∣νnν

ν=ν1
are jointly sparse with regard to the time delay. Therefore,
stacking r̂νx in R̂x results in a row-sparse matrix whose
rows are (asymptotically) non-zero only at the indices cor-
responding to the cycle frequencies. In order to exploit
this additional structure, we propose to use an exten-
sion of OMP called simultaneous orthogonal matching
pursuit (SOMP) [34] to recover the CA matrix R̂x at
once. The CA estimation based on SOMP is summa-
rized in Algorithm 1, which we further refer to as SOber.

The goal of SOber is to find the indices of the atoms con-
tained in Ym, i. e., the support of the columns of R̂x, and
subsequently recover the identified non-zero rows of R̂x
by solving least-square problems. We start with an empty
support S0. Each iteration, one atom (a column of the
matrix A = NMF−1) index is added to the support. The
index is selected according to the sum of the absolute cor-
relation values between the corresponding atoms and the
delay products of different time delays (lines 3–4). Using
the new support set Si, a least-square problem is solved for
each column in R̂x (lines 5–6). In each iteration, the atom
index to be added to the index set is chosen according to
the correlation between the residuum of Ym and the atom
set. Since every iteration adds one index to the support set,
one usually chooses niter greater than or equal to the spar-
sity of the signal to be recovered. The difference between
OMP (used in, e. g., [24]) and SOMP can be found in line 4,
where SOMP jointly considers the amount of correlation
between atoms and the delay products of multiple delays,
while OMP would select the support of r̂νx

∣∣nν

l=1 for each
l individually.
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4 Sparsity-aided CA estimation:
dictionary-assisted estimator

In Section 3, we have described a SOMP-based algorithm
that estimates the cycle frequencies and the CA from
fewer samples than required using the classic approach
by taking into consideration the inherent sparsity of
the CA. In this section, we develop an algorithm that
makes use of additional prior knowledge about the sig-
nal’s structure in the form of structure dictionaries to
further enhance the cycle frequency and CA estima-
tion. Like SOber, the new algorithm does not require the
prior knowledge about the cycle frequencies contained in
the signal.
One fact about the CA that could be exploited is that

using a rectangular pulse shape, a linearly modulated
signal’s CA exhibits spikes not only at the signal’s funda-
mental cycle frequency but also at the harmonics thereof.
Another one is the symmetry of the CA around the DC
component. First steps in this direction showing promis-
ing results have been taken in [35]. The drawback of
the solution proposed in [35] is that the convex opti-
mization problem used to recover the CA becomes huge
for practical parameter choices, which results in a pro-
hibitively large computational complexity. To circumvent
this, we propose an OMP-based greedy algorithm that
takes advantage of the additional prior knowledge while
featuring a much smaller complexity than the optimiza-
tion problem.
The proposed Dice algorithm (Algorithm 2) follows the

same idea as the SOber algorithm (Algorithm 1) in that,
it iteratively determines the support of the sparse CA and
subsequently recovers it by solving an overdetermined
least-square problem. However, in contrast to SOber, Dice
facilitates the use of further prior knowledge in addition
to the CA’s sparsity in the recovery process. Thus, in addi-
tion to the inputs received by SOber, Dice needs a set of

structure dictionaries
◦
D
(N
2
)

l |nν

l=1, one dictionary for each
delay value νl that is to be considered in the recovery
process. Since the structure dictionaries do not necessar-
ily model the DC component of the CA, it is added to
the support set in the initialization phase in Dice (line
1). Instead of working with the amount of correlation
between the residuum and the atoms directly as in SOber,
the Dice algorithm computes combinations of these as
dictated by the structure dictionaries in use (lines 3, 4).
This way, the decision about the non-zero cycle frequen-
cies (line 5) takes into account the structure of the CA.
Additionally, instead of adding a single element to the sup-
port set per iteration, Algorithm 2 adds all indices to the
support set that have a non-zero value in the selected dic-
tionary word. The recovery step (cf. lines 6, 7) remains
unchanged. Note that in Algorithm 2, the abs(·) opera-
tor stands for the element-wise absolute value of a matrix,

while the selection operator [·]l: denotes the lth row of a
matrix.

In the following, we introduce two particular structure
dictionaries that can be used with the proposed algorithm:
(i) the dictionary that accounts for the symmetry of the
CA and (ii) the dictionary that describes the harmonic
structure of the CA as well as its shape.

4.1 Symmetry dictionary

LetD(N2 )
sym ∈ {0, 1}N

2 ×N
2 denote the symmetry dictionary. Its

columns represent possible cycle frequencies contained in
the set a ∈ {1, . . . , N2 }. For simplicity, this set is chosen
such that the frequencies contained in it lie at the center
frequencies of the CA’s DFT bins. An entry of the dic-
tionary covers elements 1 to N

2 of r̂νx which is indexed
from 0 to N − 1. The symmetry dictionary is simply given
by the identity matrix, i. e., D(N2 )

sym = IN
2
. To model the

whole vector r̂νx , the dictionary is extended to include the
DC component, which is set to zero, as well as the neg-
ative cycle frequencies. Note that the DC component is
set to zero because its value is independent of the pres-
ence of cyclostationarity. The resulting full dictionary is
exemplarily given by

◦
D

(3)

sym =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0
1 0 0
0 1 0
0 0 1
0 1 0
1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
. (23)

The circle above the symbol indicates that it is the full
version of the dictionary, i. e., the one spanning the whole
Fourier range. The ones in the matrix specify the loca-
tions of the non-zero coefficients in the CA fitting the
format of (9). Note that in the case of the symmetry dic-

tionary, all of
◦
D

(N2 )

l |nν

l=1 in Algorithm 2 are identical i. e.,
◦
D

(N2 )

l |nν

l=1 = ◦
D

(N2 )

sym.
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4.2 Asymptotic CA and asymptotic dictionary
The symmetry structure dictionary exploits one of the
facts we know about the CA. In order to explore an
extreme in terms of prior knowledge, we create a dic-
tionary that contains the maximum possible amount of
prior information about the CA, i. e., the one containing
the asymptotic CA itself. This requires knowledge of the
analytic expression for the discrete asymptotic CA vector,
which we derive in the following.
To assess the performance of different CA estimation

algorithms, we employ common linearly modulated sig-
nals with symbol length Ts as described by the following
equation ([7], Eq. 73)

s(t) =
∞∑

n=−∞
cnp (t − nTs + φ). (24)

Here, p(t) is a deterministic finite-energy pulse, φ repre-
sents a fixed pulse-timing phase parameter and cn stands
for the nth symbol to be transmitted. We are now inter-
ested in an expression for the discrete asymptotic CA
vector of the above signal type.
The fundamental cycle frequency of the built-in peri-

odicity of the signal from (24) is 1
Ts
. Its continuous CA is

given by ([7], Eq. 81)

Rα
s,Ts

(τ ) =
⎧⎨
⎩

0 for α �= k
Ts

1
Ts

∞∑
n=−∞

Rc(nTs)rαp (τ − nTs)ej2παφ otherwise,

(25)

where k ∈ Z and rαα(τ ) is defined as ([7], Eq. 82)

rαα(τ ) �
∞∫

−∞
p (t + τ/2)p∗ (t − τ/2) e−j2παt dt. (26)

The symbol Z denotes the set of integers, i. e., k ∈
{. . . ,−2,−1, 0, 1, 2, . . . }.
We consider the case where cn is a purely stationary

random sequence. Thus, its autocorrelation Rc(nTs) =
R0
c (nTs) is non-zero only at n = 0 (cf. (2)), reducing (25) to

Rα
s,Ts

(τ ) =
{
0 for αTs /∈ Z

σ 2
c
Ts
rαp (τ )ej2παφ otherwise,

(27)

where σ 2
c is the average power of cn. In the following,

we assume a rectangular pulse shape of length Ts, i. e.,
p(t) = rect( t

Ts
), which leads to p(t + τ

2 )p∗(t − τ
2 ) =

rect
(

t
Ts−|τ |

)
. Thus, applying the Fourier transform to (26)

yields

Rα
s,Ts

(τ ) =
{
0 for αTs /∈ Z

σ 2
c
Ts−|τ |
Ts

sinc(α(Ts − |τ |))ej2παφ otherwise,

(28)

for |τ | ≤ Ts where sinc(x) = sin(πx)
πx . Note that the use

of the absolute value of the delay stems from the fact
that for a real symmetric pulse shape p(t), the expression
p(t + τ

2 )p∗(t − τ
2 ) is symmetric with respect to τ .

Equation 28 represents the CA of the continuous-time
signal described by (24). The CA of the sampled ver-
sion of (24) at its fundamental cycle frequency and the
harmonics thereof is given by

R′a
s,ns(ν)

∣∣
a=k N

ns
= σ 2

c
ns

sin(π a
N (ns − |ν|))

sin
(
π a

N
) ej2π

a
N dφ . (29)

The derivation of this expression can be found in the
appendix.
The coefficients of the closed-form expression (29)

together with the alternative case R′a
s,ns(ν)

∣∣
a �=k N

ns
= 0 at

different discrete cycle frequencies a are arranged in a vec-
tor rνs,ns [a] matching the format of the DFT matrix, such
that

rνs,ns [a] =
{
R′α

s,ns(ν) for a ∈ {0, . . . , N2 },
R′(a−N)

s,ns (ν) for a ∈ {N2 + 1, . . . ,N − 1}.
(30)

Note that adding purely stationary noise to the signal s(t)
does not change its asymptotic CA (with the exception of
(a, ν) = (0, 0), at which point the CA’s value is the average
power of signal and noise, cf. (2)) since the noise exhibits
no inherent periodic behavior. Due to this fact, (30) can
also be used as a reference for the CA of signals contam-
inated with additive white Gaussian noise (AWGN) with
the exception mentioned.
Given (30), we can now construct the asymptotic

dictionary:

◦
D

(N2 )

asy,l =

⎡
⎢⎢⎢⎣
abs

(
rνls,ns=N

1

)
∥∥∥∥rνls,ns=N

1

∥∥∥∥

1

, . . . ,
abs

(
rνls,ns= N

N/2

)
∥∥∥∥rνls,ns= N

N/2

∥∥∥∥

1

⎤
⎥⎥⎥⎦ . (31)

Note that in contrast to the single symmetry dictionary,
there is a whole set of asymptotic dictionaries, one for
each delay value of interest. The columns of the dictio-
naries correspond to actual symbol lengths i. e., actual
cycle frequencies. Thus, each column contains the abso-
lute value of the normalized asymptotic CA of a cycle
frequency candidate where the discrete symbol lengths
ns ∈

{
N
1 , . . . ,

N
N/2

}
correspond to the discrete cycle fre-

quencies a ∈ {1, . . . ,N/2}. It is worth noting that in
addition to its role as the basis of the second structure
dictionary for Algorithm 2, the expression (30) serves
as a reference for the direct comparison of different CA
estimation methods in Section 6.
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5 Cyclostationarity detection from sparse cyclic
spectra

Both the SOMP-based (Algorithm 1) and the dictionary-
assisted CA estimation (Algorithm 2) are able to recover
the CA without knowing which cycle frequencies are con-
tained in the signal beforehand. Furthermore, since the
the (row) support of R̂x corresponds to the candidate cycle
frequencies, its identification in Algorithm 1 (line 4) or in
Algorithm 2 (line 5) can be interpreted as blind cyclosta-
tionary spectrum sensing by itself. However, under practi-
cal limitations on the number of samples available for CA
estimation and attainable SNR levels, the support estimate
is likely to contain errors, e.g., missed and/or falsely iden-
tified support entries. This calls for a further testing of
the candidate cyclofrequencies that can be performed by
applying the TDT method described in Section 2.2. How-
ever, the obtained sparse CA is not directly compatible
with the traditional TDT because, since only few of the
coefficients of R̂x are recovered and all other coefficients
are set to zero, it is not possible to reliably estimate the
covariance matrix �̂xx∗ underH0. To tackle this problem,
we present a modification of the traditional TDT.
The traditional TDT is a CFAR detector, i. e., the prob-

ability density function (PDF) of its test statistic under
H0 is asymptotically independent of any signal parameters
like, e. g., the noise power. To achieve this, the TDT first
estimates the CA noise covariance and then rescales the
original CA by this estimate so that the scaled CA follows
a standard Gaussian distribution. This is where the prob-
lem occurs. Although, we are ultimately only interested in
the CA coefficients that are located at the signal’s cycle
frequencies, for the estimation of the noise covariance, we
need the coefficients lying between the cycle frequencies,
which only carry estimation noise. SOber and Dice do not
recover these. Thus, we propose an extension to the TDT,
the sparse TDT, to bridge this gap in the following.
To obtain optimal CA recovery performance, one would

choose the sensingmatrixAwithminimum structure, i. e.,
the selection of the m entries of the delay product would
be completely random. However, to tackle the aforemen-
tioned problem, we choose a combination of consecutive
and random delay product elements. The consecutive part
comprises the first �βm� rows of Ym, where β ∈ [0.01, 0.5]
and �·� denotes the ceiling operation. The remainder of
the rows of Ym is a random selection of the remaining
rows of YN . The first step of the sparse TDT is to deter-
mine the classical CA estimation of the consecutive block
of delay product elements. In the next step, the cycle
frequency of interest a0 is determined using either Algo-
rithm 1 or Algorithm 2. Next, the covariance matrix for
the cycle frequency a0 corresponding to the N size CA(
�̂

(N)
xx∗ (a0)

)
needs to be determined, where the superscript

(N) indicates the corresponding CA size. It is obtained as

�̂
(N)
xx∗ (a0) = �̂

(�βm�)
xx∗ (�β m

N a0�)√
β m
N

, (32)

where �̂
(�βm�)
xx∗ is the covariance matrix corresponding to

the �βm� size CA estimated from the consecutive samples
in the first step. The test statistic is subsequently evaluated
as (cf. (18))

T sparse
xx∗ = N r̂xx∗(a0)

⎛
⎜⎝ �̂(�βm�)(�β m

N a0�)√
β m
N

⎞
⎟⎠

−1

r̂Txx∗(a0).

(33)

The consecutive sample ratio β is a trade-off param-
eter. The optimal sparse recovery performance is to be
expected for the case that A = NMF−1 has the smallest
possible amount of structure, which here corresponds to
the case where the set of known delay product elements is
chosen completely at random i. e., for β = 0. Contrarily,
the best estimation quality for the CA covariance matrix
�̂xx∗ is achieved when all known delay product elements
are consecutive i. e., for β = 1.

6 Numerical evaluation
In this section, we compare the performance of the meth-
ods presented in the preceding sections. The parameters
used throughout this section are given in Table 1.
We begin by investigating the influence of the consecu-

tive sample ratio β on the spectrum sensing performance.
Figure 1 shows how the detection rate changes with β

for an SNR of 0 dB and different false alarm rates. For
all methods but the OMP, β = 0.15 seems to be a good
choice. For the OMP, the detection rate increases mono-
tonically with β . However, as can be seen below, even

Table 1 System parameters

Parameter Symbol Value(s)

Size of the CA vector - CS methods N 4000

No. of known delay product elements m 1000

Size of the CA vector - classic method m 1000

Discrete time delays ν {1, 2, 3, 4}
Modulation type BPSK

Discrete symbol length ns 8

Signal to noise ratio SNR {−4, . . . , 4}dB
No. of Monte Carlo instances 10000

Consecutive sample ratio β {0.01, . . . , 0.5}
Covariance estimation window type W Kaiser

Kaiser window parameter αKaiser 10

Kaiser window length L 201



Bollig et al. EURASIP Journal onWireless Communications and Networking  (2017) 2017:135 Page 9 of 13

Fig. 1 Detection rate over consecutive sample ratio for different false alarm rates at 0 dB SNR

for the OMP, a high β is no good choice regarding other
performance categories.
In Fig. 2, the best achievable detection rate, i. e., the

detection rate for the individual best choice of β , of
the different detectors is plotted over the receiver SNR

for different false alarm rates. The term oracle expresses
that a method has prior knowledge about the exact cycle
frequencies contained in the signal. The classic method
depends on this knowledge while for the sparse recovery,
it reduces the CA recovery to solving the overdetermined

Fig. 2Maximum detection rate (optimal individual consecutive sample ratio selection) over SNR for different false alarm rates
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Fig. 3 False alarm rate that has to be selected according to the chi-squared distribution to obtain different actual false alarm rates over the
consecutive sample ratio

least-square problem for the given support (cf. lines 5
and 6 in Algorithm 1 or lines 6 and 7 in Algorithm 2).
As expected, the oracle methods outperform the meth-
ods which have to determine the CA support themselves
by a large margin. Regarding the case of missing support
knowledge, the Dice algorithm clearly outperforms the
SOber algorithm as well as OMP. It is to be noted that
both, Fig. 1 as well as Fig. 2 do not show a significant
performance advantage of exploiting the full knowledge
of the asymptotic CA (Dice (asy)) over just exploiting its
symmetry property (Dice (sym)) for a sensible choice of β .

The lines in Fig. 3 show which false alarm rate accord-
ing to the ideal chi-squared distribution has to be set in
order to achieve 1, 3, 5, and 10% false alarm rate in the
actual system. The dashed lines cross at the desired false
alarm rate with β = 0.15. While the two Dice methods
roughly keep within a 1% offset, OMP, and SOber show
a decreasing degree of equivalence for an increasing false
alarm rate. This indicates that using the chi-squared dis-
tribution for setting the decision threshold of the Dice
algorithm is viable, which is an important observation. It
means that in contrast to many other spectrum sensing

Fig. 4 Left hit rate over SNR, right absolute index error over SNR. Both at consecutive sample ratio 0.15
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Fig. 5MSE between the CAF estimation and the actual (analytic) value. Left over the whole support, right at the cycle frequencies. Both at
consecutive sample ratio 0.15

algorithms, Dice approximately possesses a desirable fea-
ture called constant false alarm rate i. e., its test statistic is
independent of system parameters like the receiver noise
power.
Figure 4 shows how well the support of the CA is recov-

ered by the different methods. Since different types of
communication signals feature different cycle frequencies,
this information can be used for system identification. The
hit rate is the chance of exactly recovering the correct sup-
port while the absolute index error is the mean recovery
error in terms of CA bins. Obviously, the Dice methods
have superior support recovery capabilities.
The final performance category we evaluate is the CA

estimation quality achievable by sparse recovery methods
measured by the mean squared error (MSE). In the left
graph of Fig. 5, theMSE over the whole CA is plotted while
the right graph shows the MSE at the spikes of the CA, i.
e., the MSE at the actual cycle frequencies. To determine
the error, we use the analytic expression for the asymp-
totic CA vector as derived in Section 4.2, i. e., the MSE is
defined as

‖R̂x − [
rν1s,ns , . . . , r

νnν
s,ns
] ‖2F

Nnν

, (34)

where ‖ · ‖F is the Frobenius norm. The sparse recovery
method has a much lower overall MSE. This is caused by
the fact that it sets all CA coefficients but the detected
support to zero while the classical method results in a CA
that features estimation noise between the spikes. Regard-
ing the spikeMSE, bothmethods seem to perform roughly
equivalently.

7 Conclusions
Blind operation and constant false alarm rate (CFAR) are
desirable characteristics of spectrum sensing algorithms.
Unfortunately, cyclostationarity-based approaches typi-
cally only feature either one or the other. We showed
that this can be changed by using sparse recovery meth-
ods in the CA estimation. Subsequently, we developed a

way to use further prior knowledge in addition to spar-
sity for superior CA estimation. We derived a closed-form
expression of the CA of sampled linearly modulated sig-
nals with rectangular pulse shape to be used both as prior
information for the CA estimation and as a reference for
comparison. Finally, we extended a well-known statisti-
cal test for cyclostationarity to accommodate sparse input.
The results allow us to conclude that the proposed Dice
algorithm in combination with the symmetric structure
dictionary constitutes a viable alternative to the classical
TDT for the case of missing prior information about the
cycle frequencies contained in the signal.

Endnote
1Note that although we use the vector of Nyquist rate

samples xt0 to calculate x̄t0 , we do so for notational conve-
nience only. In practice, one can directly obtain the sub-
Nyquist samples x̄t0 by means of non-uniform sampling
for instance.

8 Appendix
8.1 Discrete asymptotic CA
The relation between the CA of the continuous time-
domain signal s(t), and its sampled counterpart {s(nTe)}
is given by ([36], Ch. 11, Sec. C, Eq. (111))

R′α
s,Ts(νTe) =

∞∑
l=−∞

R
α+ l

Te
s,Ts

(νTe)ejπ lν . (35)

The sum over l reflects the infinite aliasing caused by the
sampling. In the next step, we insert (28) into (35). Also,
we express quantities in terms of the sampling period Te,
i. e., Ts → nsTe,α → a

NTe
,φ → dφTe, with ns, a,N ∈ Z.

This leads to

R′a
s,ns(ν) =

⎧⎪⎪⎨
⎪⎪⎩

0 for a �= kN
ns

σ 2
c
ns−|ν|
ns ej2π

a
N dφ

∞∑
l=−∞

ejπ lν

·ej2π ldφ sinc(( a
N + l)(ns − |ν|)) otherwise,

(36)
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for |ν| ≤ ns, where ns is the oversampling factor. In this
step, we used the fact that for our assumptions all aliases
of the fundamental cycle frequency and its harmonics lie
on top of the actual fundamental cycle frequency and its
harmonics, i. e., (α + l

Te
)Ts ∈ Z iff αTs ∈ Z. Inserting

the discrete quantities given above, we get ( a
N + l)ns ∈ Z

iff a
N ns ∈ Z. Since ns ∈ Z and l ∈ Z, this always holds.

To rule out any spectral leakage, we choose N as an inte-
ger multiple of ns, since then, a = k N

ns is also an integer
and thus the fundamental discrete cycle frequency and its
harmonics hit center frequencies of frequency bins.
For a = k N

ns expression (36) can be shown to be

R′a
s,ns(ν)

∣∣
a=k N

ns
= σ 2

c
sin(π a

N (ns−|ν|))
πns ej2π

a
N dφ

∞∑
l=−∞

(−1)l
a
N +l .

(37)

To obtain (37) we used the definition of the sinc and
exploited the facts that ejπk = (−1)k for k ∈ Z and
that sin(x + kπ) = (−1)ksin(x) for k ∈ Z. The pulse
timing phase parameter dφ was set to ns+1

2 . This has the
following reason. In order to simplify the numerical eval-
uation, we want to choose φ such that the beginning of
the observed receiver signal is aligned with the rectangu-
lar pulse shapes, i. e., we would set φ = Ts

2 . However,
doing so would lead to the need to sample at the discon-
tinuities caused by the instant change in amplitudes at
the transition between symbols. To avoid this, we choose
φ = Ts

2 + ε, where ε ∈ (0,Te). Note that (37) is the same
for any ε ∈ (0,Te). In order to ease the derivation, we can
thus choose ε = Te

2 , i. e., dφ = ns+1
2 .

The infinite series in (37) can be expressed as

∞∑
l=−∞

(−1)l
a
N +l = N

a +
∞∑
l=1

(−1)l
a
N +l + (−1)l

a
N −l

= N
a + 1

2

∞∑
l=1

− 1
l+ a

2N − 1
2

+ 1
l− a

2N − 1
2

− 1
l− a

2N
+ 1

l+ a
2N

= N
a + 1

2

∞∑
l=1

− l+ a
2N − 1

2− a
2N + 1

2
l(l+ a

2N − 1
2 )

+ l− a
2N − 1

2+ a
2N + 1

2
l(l− a

2N − 1
2 )

− l− a
2N + a

2N
l(l− a

2N )
+ l+ a

2N − a
2N

l(l+ a
2N )

= N
a + 1

2

∞∑
l=1

a
2N − 1

2
l(l+ a

2N − 1
2 )

− − a
2N − 1

2
l(l− a

2N − 1
2 )

+ − a
2N

l(l− a
2N )

− a
2N

l(l+ a
2N )

.

(38)

The digamma function, denoted by ψ(z), possesses a
series expansion given by ([37], Eq. (6.3.16))

ψ(1 + z) = −γ +
∞∑
n=1

z
n(n+z) for z /∈ {−1,−2,−3, . . . },

(39)

where γ denotes the Euler-Mascheroni constant. We can
thus simplify (38) by expressing it in terms of the digamma
function as

∞∑
l=−∞

(−1)l
a
N +l = N

a + 1
2
(
ψ
( 1
2 + a

2N
)− ψ

( 1
2 − a

2N
)

+ψ
(
1 − a

2N
)− ψ

(
1 + a

2N
))
.

(40)

Since the reflection and the recurrence formulas of the
digamma function are known to be ([37], Eq. (6.3.7))

ψ(1 − z) − ψ(z) = πcot(πz) (41)

and ([37], Eq. (6.3.5))

ψ(1 + z) = ψ(z) + 1
z , (42)

respectively, we obtain

ψ
( 1
2 + a

2N
)− ψ

( 1
2 − a

2N
)

= ψ
(
1 − ( 1

2 − a
2N
))− ψ

( 1
2 − a

2N
)

= πcot
(
π
( 1
2 − a

2N
)) (43)

and
ψ
(
1 − a

2N
)− ψ

(
1 + a

2N
)

= ψ
(
1 − a

2N
)− ψ

( a
2N
)− 2N

a= πcot(π a
2N ) − 2N

a .
(44)

Inserting (43) and (44) into (40) results in

∞∑
l=−∞

(−1)l
a
N +l = 1

2π
(
cot

(
π
( 1
2 − a

2N
))+ cot

(
π a

2N
))

= 1
2π

(
tan

(
π a

2N
)+ cot

(
π a

2N
)) = π

sin(π a
N )

.

(45)

Finally, substituting (45) into (37) gives us the
expression (29).

Funding
This work was partly supported by the Deutsche Forschungsgemeinschaft
(DFG) projects CoCoSa (grant MA 1184/26-1) and CLASS (grant MA 1184/23-1).

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Institute for Theoretical Information Technology, RWTH Aachen University,
Kopernikusstraße 16, 52074 Aachen, Germany. 2Institute for Information
Technology, TU Ilmenau, 98684 Ilmenau, Germany.

Received: 13 October 2016 Accepted: 19 July 2017

References
1. Q Zhao, BM Sadler, A survey of dynamic spectrum access. IEEE Signal

Process. Mag. 24(3), 79–89 (2007)
2. T Yücek, H Arslan, A survey of spectrum sensing algorithms for cognitive

radio applications. IEEE Commun. Surv. Tutorials. 11(1), 116–130 (2009)
3. Y Zeng, Y-C Liang, AT Hoang, R Zhang, A review on spectrum sensing for

cognitive radio: challenges and solutions. EURASIP J. Adv. Signal Process.
2010 (2010)

4. E Axell, G Leus, EG Larsson, HV Poor, Spectrum sensing for cognitive radio:
state-of-the-art and recent advances. IEEE Signal Process. Mag. 29(3),
101–116 (2012)



Bollig et al. EURASIP Journal onWireless Communications and Networking  (2017) 2017:135 Page 13 of 13

5. SM Kay, Fundamentals of Statistical Signal Processing, Vol, II: Detection
Theory. (Prentice Hall, Upper Saddle River, 1998)

6. H Urkowitz, Energy detection of unknown deterministic signals. Proc.
IEEE. 55(4), 523–531 (1967)

7. WA Gardner, Exploitation of spectral redundancy in cyclostationary
signals. IEEE Signal Process. Mag. 8(2), 14–36 (1991)

8. WA Gardner, Signal interception: a unifying theoretical framework for
feature detection. IEEE Trans. Commun. 36(8), 897–906 (1988)

9. AV Dandawate, GB Giannakis, Statistical tests for presence of
cyclostationarity. IEEE Trans. Signal Process. 42(9), 2355–2369 (1994)

10. WA Gardner, A Napolitano, L Paura, Cyclostationarity: half a century of
research. Signal Process. 86(4), 639–697 (2006)

11. K Kim, IA Akbar, KK Bae, J-S Um, CM Spooner, JH Reed, in New Frontiers in
Dynamic Spectrum Access Networks, 2007. DySPAN 2007. 2nd IEEE
International SymposiumOn. Cyclostationary approaches to signal
detection and classification in cognitive radio (IEEE, Dublin, 2007),
pp. 212–215

12. J Chen, A Gibson, J Zafar, in Cognitive Radio and Software Defined Radios:
Technologies and Techniques, 2008 IET Seminar On. Cyclostationary
spectrum detection in cognitive radios (IET, London, 2008), pp. 1–5

13. PD Sutton, KE Nolan, LE Doyle, Cyclostationary signatures in practical
cognitive radio applications. IEEE J. Selected Areas Commun. 26(1), 13–24
(2008)

14. CM Spooner, RB Nicholls, Spectrum sensing based on spectral correlation.
Cogn. Radio Technol. 2, 593–634 (2009)

15. Z Khalaf, A Nafkha, J Palicot, in Circuits and Systems (MWSCAS), 2011 IEEE
54th International Midwest SymposiumOn. Blind cyclostationary feature
detector based on sparsity hypotheses for cognitive radio equipment
(IEEE, Seoul, 2011), pp. 1–4

16. A Napolitano, Cyclostationarity: new trends and applications. Signal
Process. 120, 385–408 (2016)

17. J Lundén, V Koivunen, A Huttunen, HV Poor, Collaborative cyclostationary
spectrum sensing for cognitive radio systems. IEEE Transa. Signal Process.
57(11), 4182–4195 (2009)

18. M Derakhshani, T Le-Ngoc, M Nasiri-Kenari, Efficient cooperative
cyclostationary spectrum sensing in cognitive radios at low SNR regimes.
IEEE Trans. Wireless Commun. 10(11), 3754–3764 (2011)

19. DL Donoho, Scanning the technology. Proc. IEEE. 98(6), 910–912 (2010)
20. DL Donoho, Compressed sensing. IEEE Trans. Inf. Theory. 52(4),

1289–1306 (2006)
21. EJ Candès, MB Wakin, An introduction to compressive sampling. IEEE

Signal Proc. Mag. 25(2), 21–30 (2008)
22. JA Tropp, AC Gilbert, Signal recovery from randommeasurements via

orthogonal matching pursuit. IEEE Trans. Inf. Theory. 53(12), 4655–4666
(2007)

23. D Needell, JA Tropp, CoSaMP: iterative signal recovery from incomplete
and inaccurate samples. Commun. ACM. 53(12), 93–100 (2010)

24. Z Khalaf, J Palicot, in Cognitive Communication and Cooperative HetNet
Coexistence. New blind free-band detectors exploiting cyclic
autocorrelation function sparsity (Springer, Berlin, 2014), pp. 91–117

25. Z Tian, Y Tafesse, BM Sadler, Cyclic feature detection with sub-Nyquist
sampling for wideband spectrum sensing. IEEE J. Selected Topics Signal
Process. 6(1), 58–69 (2012)

26. E Rebeiz, V Jain, D Cabric, in IEEE International Conference on
Communications (ICC). Cyclostationary-based low complexity wideband
spectrum sensing using compressive sampling, (Ottawa, 2012),
pp. 1619–1623

27. D Cohen, E Rebeiz, V Jain, YC Eldar, D Cabric, in IEEE International
Workshop on Computational Advances in Multi-Sensor Adaptive Processing
(CAMSAP). Cyclostationary feature detection from sub-Nyquist samples,
(San Juan, 2011), pp. 333–336

28. M Mishali, YC Eldar, From theory to practice: sub-Nyquist sampling of
sparse wideband analog signals. IEEE J. Selected Topics Signal Process.
4(2), 375–391 (2010)

29. G Leus, Z Tian, in Computational Advances in Multi-Sensor Adaptive
Processing (CAMSAP), 2011 4th IEEE International Workshop On. Recovering
second-order statistics from compressive measurements (IEEE, San Juan,
2011), pp. 337–340

30. DD Ariananda, G Leus, in Acoustics, Speech and Signal Processing (ICASSP),
2014 IEEE International Conference On. Non-uniform sampling for

compressive cyclic spectrum reconstruction (IEEE, Florence, 2014),
pp. 41–45

31. D Cohen, YC Eldar, Sub-Nyquist cyclostationary detection for cognitive
radio. IEEE Trans. Signal Process. 65(11), 3004–3019 (2017)

32. A Napolitano, Generalizations of Cyclostationary Signal Processing: Spectral
Analysis and Applications. (John Wiley & Sons, Hoboken, 2012)

33. DL Donoho, For most large underdetermined systems of linear equations
the minimal 
1-norm solution is also the sparsest solution. Commun. Pure
Appl. Math. 59, 797–829 (2004)

34. JA Tropp, AC Gilbert, MJ Strauss, Algorithms for simultaneous sparse
approximation. Part I: Greedy pursuit. Signal Process. 86(3), 572–588
(2006)

35. A Bollig, R Mathar, in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). Dictionary-based reconstruction of the cyclic
autocorrelation via 
1-minimization for cyclostationary spectrum sensing,
(Vancouver, 2013)

36. WA Gardner, Statistical Spectral Analysis: A Nonprobabilistic Theory.
(Prentice-Hall, New Jersey, 1986)

37. M Abramowitz, IA Stegun, Handbook of Mathematical Functions with
Formulas, Graphs, andMathematical Tables. (Courier Corporation, New
York, 1964)


	Abstract
	Keywords

	Introduction
	Cyclostationary spectrum sensing
	System model and CA estimation
	The time-domain test (TDT) for cyclostationarity

	Sparsity-aided CA estimation: simultaneous OMP-based estimator
	Sparsity-aided CA estimation: dictionary-assisted estimator
	Symmetry dictionary
	Asymptotic CA and asymptotic dictionary

	Cyclostationarity detection from sparse cyclic spectra
	Numerical evaluation
	Conclusions
	Appendix
	Discrete asymptotic CA

	Funding
	Competing interests
	Publisher's Note
	Author details
	References

