127 research outputs found

    Crowding-induced hybridization of single DNA hairpins

    Get PDF
    It is clear that a crowded environment influences the structure, dynamics, and interactions of biological molecules, but the complexity of this phenomenon demands the development of new experimental and theoretical approaches. Here we use two complementary single-molecule FRET techniques to show that the kinetics of DNA base pairing and unpairing, which are fundamental to both the biological role of DNA and its technological applications, are strongly modulated by a crowded environment. We directly observed single DNA hairpins, which are excellent model systems for studying hybridization, either freely diffusing in solution or immobilized on a surface under crowding conditions. The hairpins followed two-state folding dynamics with a closing rate increasing by 4-fold and the opening rate decreasing 2-fold, for only modest concentrations of crowder [10% (w/w) polyethylene glycol (PEG)]. These experiments serve both to unambiguously highlight the impact of a crowded environment on a fundamental biological process, DNA base pairing, and to illustrate the benefits of single-molecule approaches to probing the structure and dynamics of complex biomolecular systems

    Surface Charge Control of Quantum Dot Blinking

    Get PDF
    A characteristic property of colloidal semiconductor nanocrystal quantum dots (QDs) is their emission intermittency. Although a unifying theory of QD photoprocesses remains elusive, the importance of charged states is clear. We now report a new approach to directly study the role of surface charge on QD emission by adding metal ions to individual, core-only QDs immobilized in aqueous solution in an agarose gel. The CdTe QDs show very stable emission in the absence of metal ions but a dramatic and reversible increase in blinking due to the presence of trivalent metal ions. Our results support a charge-separation model, in which the major blinking pathway is the surface trapping of electrons; transiently bound metal ions close to the QD surface enhance this process

    Conformationally rigid pyrazoloquinazoline α-amino acids: one- and two-photon induced fluorescence

    Get PDF
    The synthesis and photophysical properties of a new class of α-amino acid bearing a rigid pyrazoloquinazoline chromophore are described. Confromational constraint of the amino acid side-chains resulted in high emission quantum yields, while the demonstration of two-photon-induced fluorescence via near-IR excitation signifies their potential for sensitive bioimaging applications

    Evaluating implicit feedback models using searcher simulations

    Get PDF
    In this article we describe an evaluation of relevance feedback (RF) algorithms using searcher simulations. Since these algorithms select additional terms for query modification based on inferences made from searcher interaction, not on relevance information searchers explicitly provide (as in traditional RF), we refer to them as implicit feedback models. We introduce six different models that base their decisions on the interactions of searchers and use different approaches to rank query modification terms. The aim of this article is to determine which of these models should be used to assist searchers in the systems we develop. To evaluate these models we used searcher simulations that afforded us more control over the experimental conditions than experiments with human subjects and allowed complex interaction to be modeled without the need for costly human experimentation. The simulation-based evaluation methodology measures how well the models learn the distribution of terms across relevant documents (i.e., learn what information is relevant) and how well they improve search effectiveness (i.e., create effective search queries). Our findings show that an implicit feedback model based on Jeffrey's rule of conditioning outperformed other models under investigation

    A new twist on PIFE: photoisomerisation-related fluorescence enhancement

    Get PDF
    PIFE was first used as an acronym for protein-induced fluorescence enhancement, which refers to the increase in fluorescence observed upon the interaction of a fluorophore, such as a cyanine, with a protein. This fluorescence enhancement is due to changes in the rate of cis/trans photoisomerisation. It is clear now that this mechanism is generally applicable to interactions with any biomolecule and, in this review, we propose that PIFE is thereby renamed according to its fundamental working principle as photoisomerisation-related fluorescence enhancement, keeping the PIFE acronym intact. We discuss the photochemistry of cyanine fluorophores, the mechanism of PIFE, its advantages and limitations, and recent approaches to turn PIFE into a quantitative assay. We provide an overview of its current applications to different biomolecules and discuss potential future uses, including the study of protein-protein interactions, protein-ligand interactions and conformational changes in biomolecules.Comment: No Comment

    High-efficiency green phosphorescence from spin-coated single-layer dendrimer light-emitting diodes

    Get PDF
    We demonstrate very high-efficiency green phosphorescence from a single-layer dendrimer organic light-emitting diode formed by spin-coating. A first generation fac-tris(2-phenylpyridine) iridium cored dendrimer doped into a wide-gap 4,4'-bis(N-carbazole) biphenyl host displays a peak external quantum efficiency of 8.1% (28 Cd/A) at a brightness of 3450 Cd/m(2) and a current density of 13.1 mA/cm(2). A peak power efficiency of 6.9 lm/W was measured at 1475 Cd/m(2) and 5 mA/cm(2). We attribute this exceptionally high quantum efficiency for a single-layer device to the excellent film forming properties and high photoluminescence quantum yield of the dendrimer blend and efficient injection of charge into the emissive layer. These results suggest that dendrimers are an effective method for producing efficient phosphorescent devices by spin-coating. (C) 2002 American Institute of Physics

    A new twist on PIFE: photoisomerisation-related fluorescence enhancement

    Get PDF
    PIFE was first used as an acronym for protein-induced fluorescence enhancement, which refers to the increase in fluorescence observed upon the interaction of a fluorophore, such as a cyanine, with a protein. This fluorescence enhancement is due to changes in the rate of cis/trans photoisomerisation. It is clear now that this mechanism is generally applicable to interactions with any biomolecule and, in this review, we propose that PIFE is thereby renamed according to its fundamental working principle as photoisomerisation-related fluorescence enhancement, keeping the PIFE acronym intact. We discuss the photochemistry of cyanine fluorophores, the mechanism of PIFE, its advantages and limitations, and recent approaches to turn PIFE into a quantitative assay. We provide an overview of its current applications to different biomolecules and discuss potential future uses, including the study of protein-protein interactions, protein-ligand interactions and conformational changes in biomolecules

    Mann and gender in Old English prose : a pilot study

    Get PDF
    It has long been known that OE mann was used in gender-neutral as well as gender-specific contexts. Because of the enormous volume of its attestations in Old English prose, the more precise usage patterns of mann remain, however, largely uncharted, and existing lexicographical tools provide only a basic picture. This article aims to present a preliminary study of the various uses of mann as attested in Old English prose, particularly in its surprisingly consistent use by an individual author, namely that of the ninth-century Old English Martyrology. Patterns emerging from this text are then tested against other prose material. Particular attention is paid to gender-specific usage, examples of which are shown to be exceptional for a word which largely occurs in gender-neutral contexts.Publisher PDFPeer reviewe

    Bacteria-instructed synthesis of polymers for self-selective microbial binding and labelling

    Get PDF
    The detection and inactivation of pathogenic strains of bacteria continues to be an important therapeutic goal. Hence, there is a need for materials that can bind selectively to specific microorganisms, for diagnostic or anti-infective applications, but which can be formed from simple and inexpensive building blocks. Here, we exploit bacterial redox systems to induce a copper-mediated radical polymerisation of synthetic monomers at cell surfaces, generating polymers in situ that bind strongly to the microorganisms which produced them. This ‘bacteria-instructed synthesis’ can be carried out with a variety of microbial strains, and we show that the polymers produced are self-selective binding agents for the ‘instructing’ cell types. We further expand on the bacterial redox chemistries to ‘click’ fluorescent reporters onto polymers directly at the surfaces of a range of clinical isolate strains, allowing rapid, facile and simultaneous binding and visualisation of pathogens

    Lanthanide compounds containing a benzo-15-crown-5 derivatised [60]fullerene and the related [Tb(H2O)(3)(NO3)(2)(acac)]. C14H20O5 supramolecular adduct

    Get PDF
    Novel lanthanum(III), europium(III) and terbium(III) compounds of a benzo-15-crown-5 [60]fulleropyrrolidine were isolated in the solid state and characterised using vibrational (infrared and Raman) spectroscopy and by 13C CP MAS NMR for the lanthanum(III) compound. The photoluminescence properties were investigated for the europium(III) and terbium(III) compounds. The related [Tb(H2O)3(NO3)2(acac)] C14H20O5 [where acac ¼ acetylacetonate and C14H20O5 ¼ benzo-15-crown-5] supramolecular adduct was isolated using similar synthetic conditions, in the absence of [60]fullerene, and its crystal structure used as a model for the coordination sphere of the lanthanide [60]fullerene derivatives, with further supporting evidence given by photoluminescence measurements
    corecore