1,057 research outputs found
Energy Interpretation of Solar Radiation Affects for Artemisa Province
Solar energy is one of the renewable sources with the best prospects for the future, which can have used directly in two fundamental ways: thermal energy and photovoltaic solar energy. Photovoltaic systems are a viable alternative to diversify the energy base worldwide, being able to inject electrical energy into the grid. The work shows the study of the energy interpretation of solar radiation that affects the province of Artemisa, for its possible use in the generation of electricity, based on the introduction of photovoltaic systems connected to the electricity grid. A theoretical analysis is made about the solar potential and the influence of the climatic variables in the use of it, the territory of the Artemisa province is characterized, where the solar radiation for the generation of electricity is valued, the energy impact is evaluated. Derives from the use of solar radiation that affects the territory to generate electrical energy
Identification of Continuous Human B-Cell Epitopes in the Envelope Glycoprotein of Dengue Virus Type 3 (DENV-3)
BACKGROUND:Dengue virus infection is a growing global public health concern in tropical and subtropical regions of the world. Dengue vaccine development has been hampered by concerns that cross-reactive immunological memory elicited by a candidate vaccine could increase the risk of development of more severe clinical forms. One possible strategy to reduce risks associated with a dengue vaccine is the development of a vaccine composed of selected critical epitopes of each of the serotypes. METHODOLOGY/PRINCIPAL FINDINGS:Synthetic peptides were used to identify B-cell epitopes in the envelope (E) glycoprotein of dengue virus type 3 (DENV-3). Eleven linear, immunodominant epitopes distributed in five regions at amino acid (aa) positions: 51-65, 71-90, 131-170, 196-210 and 246-260 were identified by employing an enzyme- linked immunosorbent assay (ELISA), using a pool of human sera from dengue type 3 infected individuals. Peptides 11 (aa51-65), 27 and 28 (aa131-150) also reacted with dengue 1 (DENV-1) and dengue 2 (DENV-2) patient sera as analyzed through the ROC curves generated for each peptide by ELISA and might have serotype specific diagnostic potential. Mice immunized against each one of the five immunogenic regions showed epitopes 51-65, 131-170, 196-210 and 246-260 elicited the highest antibody response and epitopes131-170, 196-210 and 246-260, elicited IFN-gamma production and T CD4+ cell response, as evaluated by ELISA and ELISPOT assays respectively. CONCLUSIONS/SIGNIFICANCE:Our study identified several useful immunodominant IgG-specific epitopes on the envelope of DENV-3. They are important tools for understanding the mechanisms involved in antibody dependent enhancement and immunity. If proven protective and safe, in conjunction with others well-documented epitopes, they might be included into a candidate epitope-based vaccine
Recommended from our members
Measurements of long-range two-particle correlation over a wide pseudorapidity range in pâPb collisions at sNN = 5.02 TeV
Correlations in azimuthal angle extending over a long range in pseudorapidity between particles, usually called the âridgeâ phenomenon, were discovered in heavy-ion collisions, and later found in pp and pâPb collisions. In large systems, they are thought to arise from the expansion (collective flow) of the produced particles. Extending these measurements over a wider range in pseudorapidity and final-state particle multiplicity is important to understand better the origin of these long-range correlations in small collision systems. In this Letter, measurements of the long-range correlations in pâPb collisions at sNN = 5.02 TeV are extended to a pseudorapidity gap of âη ~ 8 between particles using the ALICE forward multiplicity detectors. After suppressing non-flow correlations, e.g., from jet and resonance decays, the ridge structure is observed to persist up to a very large gap of âη ~ 8 for the first time in pâPb collisions. This shows that the collective flow-like correlations extend over an extensive pseudorapidity range also in small collision systems such as pâPb collisions. The pseudorapidity dependence of the second-order anisotropic flow coefficient, v2(η), is extracted from the long-range correlations. The v2(η) results are presented for a wide pseudorapidity range of â3.1 < η < 4.8 in various centrality classes in pâPb collisions. To gain a comprehensive understanding of the source of anisotropic flow in small collision systems, the v2(η) measurements are compared with hydrodynamic and transport model calculations. The comparison suggests that the final-state interactions play a dominant role in developing the anisotropic flow in small collision systems
Recommended from our members
Multiplicity and event-scale dependent flow and jet fragmentation in pp collisions at s = 13 TeV and in pâPb collisions at sNN = 5.02 TeV
Long- and short-range correlations for pairs of charged particles are studied via two-particle angular correlations in pp collisions at s = 13 TeV and pâPb collisions at sNN = 5.02 TeV. The correlation functions are measured as a function of relative azimuthal angle âÏ and pseudorapidity separation âη for pairs of primary charged particles within the pseudorapidity interval |η| < 0.9 and the transverse-momentum interval 1 < pT< 4 GeV/c. Flow coefficients are extracted for the long-range correlations (1.6 < |âη| < 1.8) in various high-multiplicity event classes using the low-multiplicity template fit method. The method is used to subtract the enhanced yield of away-side jet fragments in high-multiplicity events. These results show decreasing flow signals toward lower multiplicity events. Furthermore, the flow coefficients for events with hard probes, such as jets or leading particles, do not exhibit any significant changes compared to those obtained from high-multiplicity events without any specific event selection criteria. The results are compared with hydrodynamic-model calculations, and it is found that a better understanding of the initial conditions is necessary to describe the results, particularly for low-multiplicity events
Systematic study of flow vector fluctuations in âSNN=5.02 TeV Pb-Pb collisions
Measurements of the pT-dependent flow vector fluctuations in Pb-Pb collisions at sNN=5.02TeV using azimuthal correlations with the ALICE experiment at the Large Hadron Collider are presented. A four-particle correlation approach [ALICE Collaboration, Phys. Rev. C 107, L051901 (2023)2469-998510.1103/PhysRevC.107.L051901] is used to quantify the effects of flow angle and magnitude fluctuations separately. This paper extends previous studies to additional centrality intervals and provides measurements of the pT-dependent flow vector fluctuations at sNN=5.02TeV with two-particle correlations. Significant pT-dependent fluctuations of the V - 2 flow vector in Pb-Pb collisions are found across different centrality ranges, with the largest fluctuations of up to âŒ15% being present in the 5% most central collisions. In parallel, no evidence of significant pT-dependent fluctuations of V - 3 or V - 4 is found. Additionally, evidence of flow angle and magnitude fluctuations is observed with more than 5Ï significance in central collisions. These observations in Pb-Pb collisions indicate where the classical picture of hydrodynamic modeling with a common symmetry plane breaks down. This has implications for hard probes at high pT, which might be biased by pT-dependent flow angle fluctuations of at least 23% in central collisions. Given the presented results, existing theoretical models should be reexamined to improve our understanding of initial conditions, quark-gluon plasma properties, and the dynamic evolution of the created system
Emergence of Long-Range Angular Correlations in Low-Multiplicity Proton-Proton Collisions
This Letter presents the measurement of near-side associated per-trigger yields, denoted ridge yields, from the analysis of angular correlations of charged hadrons in proton-proton collisions at s=13 TeV. Long-range ridge yields are extracted for pairs of charged particles with a pseudorapidity difference of 1.4<|Îη|<1.8 and a transverse momentum of 1<2 GeV/c, as a function of the charged-particle multiplicity measured at midrapidity. This Letter extends the measurements of the ridge yield to the low multiplicity region, where in hadronic collisions it is typically conjectured that a strongly interacting medium is unlikely to be formed. The precision of the new low multiplicity results allows for the first direct quantitative comparison with the results obtained in e+e- collisions at s=91 GeV and s=183-209 GeV, where initial-state effects such as preequilibrium dynamics and collision geometry are not expected to play a role. In the multiplicity range
Observation of abnormal suppression of f0(980) production in p-Pb collisions at âsNN=5.02 TeV
The dependence of f0(980) production on the final-state charged-particle multiplicity in pâPb collisions at sNN=5.02 TeV is reported. The production of f0(980) is measured with the ALICE detector via the f0(980)âÏ+Ïâ decay channel in a midrapidity region of â0.5<0. Particle yield ratios of f0(980) to Ï and Kâ(892)0 are found to be decreasing with increasing charged-particle multiplicity. The magnitude of the suppression of the f0(980)/Ï and f0(980)/Kâ(892)0 yield ratios is found to be dependent on the transverse momentum pT, suggesting different mechanisms responsible for the measured effects. Furthermore, the nuclear modification factor QpPb of f0(980) is measured in various multiplicity ranges. The QpPb shows a strong suppression of the f0(980) production in the pT region up to about 4 GeV/c. The results on the particle yield ratios and QpPb for f0(980) may help to understand the late hadronic phase in pâPb collisions and the nature of the internal structure of f0(980) particle
Global baryon number conservation encoded in net-proton fluctuations measured in PbâPb collisions at âsNN = 2.76 TeV
Experimental results are presented on event-by-event net-proton fluctuation measurements in PbâPb collisions at âSNN=2.76 TeV, recorded by the ALICE detector at the CERN LHC. These measurements have as their ultimate goal an experimental test of Lattice QCD (LQCD) predictions on second and higher order cumulants of net-baryon distributions to search for critical behavior near the QCD phase boundary. Before confronting them with LQCD predictions, account has to be taken of correlations stemming from baryon number conservation as well as fluctuations of participating nucleons. Both effects influence the experimental measurements and are usually not considered in theoretical calculations. For the first time, it is shown that event-by-event baryon number conservation leads to subtle long-range correlations arising from very early interactions in the collisions.publishedVersio
- âŠ