421 research outputs found
Load Balancing via Random Local Search in Closed and Open systems
In this paper, we analyze the performance of random load resampling and
migration strategies in parallel server systems. Clients initially attach to an
arbitrary server, but may switch server independently at random instants of
time in an attempt to improve their service rate. This approach to load
balancing contrasts with traditional approaches where clients make smart server
selections upon arrival (e.g., Join-the-Shortest-Queue policy and variants
thereof). Load resampling is particularly relevant in scenarios where clients
cannot predict the load of a server before being actually attached to it. An
important example is in wireless spectrum sharing where clients try to share a
set of frequency bands in a distributed manner.Comment: Accepted to Sigmetrics 201
Small-Scale Interstellar Na I Structure Toward M92
We have used integral field echelle spectroscopy with the DensePak
fiber-optic array on the KPNO WIYN telescope to observe the central 27" x 43"
of the globular cluster M92 in the Na I D wavelength region at a spatial
resolution of 4". Two interstellar Na I absorption components are evident in
the spectra at LSR velocities of 0 km/s (Cloud 1) and -19 km/s (Cloud 2).
Substantial strength variations in both components are apparent down to scales
limited by the fiber-to-fiber separations. The derived Na I column densities
differ by a factor of 4 across the Cloud 1 absorption map and by a factor of 7
across the Cloud 2 map. Using distance upper limits of 400 and 800 pc for Cloud
1 and Cloud 2, respectively, the absorption maps indicate structure in the ISM
down to scales of 1600 and 3200 AU. The fiber-to-fiber Na I column density
differences toward M92 are comparable to those found in a similar study of the
ISM toward the globular cluster M15. Overall, the structures in the
interstellar components toward M92 have significantly lower column densities
than those toward M15. We interpret these low column density structures as
small-scale turbulent variations in the gas and compare them to the
larger-scale, higher column density variations toward M15, which may be the
hallmarks of actual H I structures.Comment: 9 pages, 2 figures, accepted for publication in ApJ Letter
Distances to the high galactic latitude molecular clouds G192-67 and MBM 23-24
We report on distance determinations for two high Galactic latitude cloud
complexes, G192-67 and MBM 23-24. No distance determination exists in the
literature for either cloud. Thirty-four early type stars were observed towards
the two clouds, more than half of which have parallaxes measured by the
Hipparcos satellite. For the remaining stars we have made spectroscopic
distance estimates. The data consist of high resolution echelle spectra
centered on the Na I D lines, and were obtained over six nights at the Coude
Feed telescope at Kitt Peak National Observatory. Interstellar absorption lines
were detected towards some of the stars, enabling estimates of the distances to
the clouds of 109 +/- 14 pc for G192-67, and of 139 +/- 33 pc for MBM 23-24. We
discuss the relationship of these clouds to other ISM features such as the
Local Hot Bubble and the local cavity in neutral hydrogen.Comment: 15 pages, 6 embedded figures, to be published in the ApJ Vol. 516,
No.
Experimental analysis of gas-sensitive Braitenberg vehicles
This article addresses the problem of localizing a static gas source in an indoor environment by a mobile robot. In contrast to previous works, the environment is not artificially ventilated to produce a strong unidirectional airflow. Here, the dominant transport mechanisms of gas molecules are turbulence and convection flow rather than diffusion, which results in a patchy, chaotically fluctuating gas distribution. Two Braitenberg-type strategies (positive and negative tropotaxis) based on the instantaneously measured spatial concentration gradient were investigated. Both strategies were shown to be of potential use for gas source localization. As a possible solution to the problem of gas source declaration (the task of determining with certainty that the gas source has been found), an indirect localization strategy based on exploration and concentration peak avoidance is suggested. Here, a gas source is located by exploiting the fact that local concentration maxima occur more frequently near the gas source compared to distant regions
A Physics-based Investigation of Pt-salt Doped Carbon Nanotubes for Local Interconnects
We investigate, by combining physical and electrical measurements together with an atomistic-to-circuit modeling approach, the conductance of doped carbon nanotubes (CNTs) and their eligibility as possible candidate for next generation back-end-of-line (BEOL) interconnects. Ab-initio simulations predict a doping-related shift of the Fermi level, which reduces shell chirality variability and improves electrical conductance up to 90% by converting semiconducting shells to metallic. Circuit-level simulations predict up to 88% signal delay improvement with doped vs. pristine CNT. Electrical measurements of Pt-salt doped CNTs provide up to 50% of resistance reduction which is a milestone result for future CNT interconnect technology
Smc5/6 coordinates formation and resolution of joint molecules with chromosome morphology to ensure meiotic divisions
During meiosis, Structural Maintenance of Chromosome (SMC) complexes underpin two fundamental features of meiosis: homologous recombination and chromosome segregation. While meiotic functions of the cohesin and condensin complexes have been delineated, the role of the third SMC complex, Smc5/6, remains enigmatic. Here we identify specific, essential meiotic functions for the Smc5/6 complex in homologous recombination and the regulation of cohesin. We show that Smc5/6 is enriched at centromeres and cohesin-association sites where it regulates sister-chromatid cohesion and the timely removal of cohesin from chromosomal arms, respectively. Smc5/6 also localizes to recombination hotspots, where it promotes normal formation and resolution of a subset of joint-molecule intermediates. In this regard, Smc5/6 functions independently of the major crossover pathway defined by the MutLγ complex. Furthermore, we show that Smc5/6 is required for stable chromosomal localization of the XPF-family endonuclease, Mus81-Mms4Eme1. Our data suggest that the Smc5/6 complex is required for specific recombination and chromosomal processes throughout meiosis and that in its absence, attempts at cell division with unresolved joint molecules and residual cohesin lead to severe recombination-induced meiotic catastroph
Radar observations of geomagnetic disturbance effects on midlatitude mesosphere/lower thermosphere dynamics
Zeitreihen von Monatsmittelwerten des Windes in der Mesosphäre/unteren Thermosphäre über Collm werden auf mögliche Korrelationen mit der Nordatlantischen Oszillation (NAO) und der Südlichen Oszillation (SO) hin untersucht. Während eine positive Korrelation bis in die 1990er Jahre existiert, schwächt sich diese in der Folge ab und kehrt sich teilweise um. Da NAO und SO gekoppelt sind, erfolgen diese Änderungen etwa zur selben Zeit. Die Änderung der Kopplung steht wahrscheinlich in Verbindung mit einer generellen Änderung der Dynamik der mittleren Atmosphäre
Specialized interfaces of Smc5/6 control hinge stability and DNA association
The Structural Maintenance of Chromosomes (SMC) complexes: cohesin, condensin and Smc5/6 are involved in the organization of higher-order chromosome structure—which is essential for accurate chromosome duplication and segregation. Each complex is scaffolded by a specific SMC protein dimer (heterodimer in eukaryotes) held together via their hinge domains. Here we show that the Smc5/6-hinge, like those of cohesin and condensin, also forms a toroidal structure but with distinctive subunit interfaces absent from the other SMC complexes; an unusual ‘molecular latch’ and a functional ‘hub’. Defined mutations in these interfaces cause severe phenotypic effects with sensitivity to DNA-damaging agents in fission yeast and reduced viability in human cells. We show that the Smc5/6-hinge complex binds preferentially to ssDNA and that this interaction is affected by both ‘latch’ and ‘hub’ mutations, suggesting a key role for these unique features in controlling DNA association by the Smc5/6 complex
A space–time Trefftz discontinuous Galerkin method for the acoustic wave equation in first-order formulation
We introduce a space–time Trefftz discontinuous Galerkin method for the first-order transient acoustic wave equations in arbitrary space dimensions, extending the one-dimensional scheme of Kretzschmar et al. (IMA J Numer Anal 36:1599–1635, 2016). Test and trial discrete functions are space–time piecewise polynomial solutions of the wave equations. We prove well-posedness and a priori error bounds in both skeleton-based and mesh-independent norms. The space–time formulation corresponds to an implicit time-stepping scheme, if posed on meshes partitioned in time slabs, or to an explicit scheme, if posed on “tent-pitched” meshes. We describe two Trefftz polynomial discrete spaces, introduce bases for them and prove optimal, high-order h-convergence bounds
Indoor Contamination with Hexabromocyclododecanes, Polybrominated Diphenyl Ethers, and Perfluoroalkyl Compounds: An Important Exposure Pathway for People?
This review underlines the importance of indoor contamination as a pathway of human exposure to hexabromocyclododecanes (HBCDs), polybrominated diphenyl ethers (PBDEs), and perfluoroalkyl compounds (PFCs). There is ample evidence of substantial contamination of indoor dust with these chemicals and that their concentrations in indoor air exceed substantially those outdoors. Studies examining the relationship between body burden and exposure via indoor dust are inconsistent while some indicate a link between body burdens and PBDE and HBCD exposure via dust ingestion, others find no correlation. Likewise, while concentrations in indoor dust and human tissues are both highly skewed, this does not necessarily imply causality. Evidence suggests exposure via dust ingestion is higher for toddlers than adults. Research priorities include identifying means of reducing indoor concentrations and indoor monitoring methods that provide the most ""biologically-relevant"" measures of exposure as well as monitoring a wider range of microenvironment categories. Other gaps include studies to improve understanding of the following: emission rates and mechanisms via which these contaminants migrate from products into indoor air and dust; relationships between indoor exposures and human body burdens; relevant physicochemical properties; the gastrointestinal uptake by humans of these chemicals from indoor dust; and human dust ingestion rates.</p
- …
