703 research outputs found
Pseudo-binary phase diagram for Zr-based in situ ß phase composites
The pseudo-binary (quasi-equilibrium) phase diagram for Zr-based bulk metallic glasses with crystalline in situ precipitates (ß phase) has been constructed from high-temperature phase information and chemical composition analysis. The phase evolution was detected in situ by high-energy synchrotron x-ray diffraction followed by Rietveld analysis of the data for volume fraction estimation. The phase diagram delineates phase fields and allows the control of phase fractions. Combined with related previous work by the authors, this diagram offers a unique opportunity to control both the morphology and volume of the dendritic ß phase precipitates to enhance the properties of the composites
Amphetamine-type-substance-related presentations to the Emergency Department Mental Health Team of a local health district in Australia
© The Royal Australian and New Zealand College of Psychiatrists 2019. Objectives: To identify the prevalence and profile of amphetamine-type-substance-related presentations to the Emergency Department Mental Health Team of a local health district in Australia. Methods: Data was collected from medical records of all amphetamine-type-substance presentations to the Emergency Department Mental Health Team over a 1-year period, between 1 January 2015 and 31 December 2015. Results: Of all presentations referred to the Emergency Department Mental Health Team, 0.15% (N = 189) were amphetamine-type-substance related. Of these, the majority were male, the average age was 32, 19.0% engaged in intravenous drug use, some were aggressive and 15.9% required tranquilisation. The most common presenting issues were psychosis and suicidal threats, intent and behaviour (including intentional overdose). Multiple comorbid conditions were identified. On discharge, 34.4% were admitted into a psychiatric hospital and 32.8% were referred to Community Mental health teams. Conclusions: Amphetamine-type-substance users suffer from multiple comorbidities and pose a significant burden on emergency services
Chemical Properties of Element 105 in Aqueous Solution: Halide Complex Formation and Anion Exchange into Triisoctyl Amine
Effect of Weld Schedule on the Residual Stress Distribution of Boron Steel Spot Welds
Press-hardened boron steel has been utilized in anti-intrusion systems in automobiles, providing high strength and weight-saving potential through gage reduction. Boron steel spot welds exhibit a soft heat-affected zone which is surrounded by a hard nugget and outlying base material. This soft zone reduces the strength of the weld and makes it susceptible to failure. Additionally, different welding regimes lead to significantly different hardness distributions, making failure prediction difficult. Boron steel sheets, welded with fixed and adaptive schedules, were characterized. These are the first experimentally determined residual stress distributions for boron steel resistance spot welds which have been reported. Residual strains were measured using neutron diffraction, and the hardness distributions were measured on the same welds. Additionally, similar measurements were performed on spot welded DP600 steel as a reference material. A correspondence between residual stress and hardness profiles was observed for all welds. A significant difference in material properties was observed between the fixed schedule and adaptively welded boron steel samples, which could potentially lead to a difference in failure loads between the two boron steel welds
Recommended from our members
Additive Manufacturing of 1018 Steel: Process Observations and Calculations
The temperature distribution in the vicinity of the laser used in direct metal deposition
(DMD) plays a critical role in determining the final microstructure and mechanical properties of
the deposit and the heat-affected zone (HAZ) within the substrate. Samples were prepared using
Laser Engineered Net Shaping (LENSTM) by depositing AISI 1018 steel powder onto AISI 1018
steel substrates in multiple, overwritten passes. The laser power and speed were varied to control
the heat input and the rate of cooling. The process characteristics were then quantified and
compared across the samples to determine the effect of input parameters on the resulting deposit
microstructures.Mechanical Engineerin
Massive Stars: Their Environment and Formation
Cloud environment is thought to play a critical role in determining the
mechanism of formation of massive stars. In this contribution we review the
physical characteristics of the environment around recently formed massive
stars. Particular emphasis is given to recent high angular resolution
observations which have improved our knowledge of the physical conditions and
kinematics of compact regions of ionized gas and of dense and hot molecular
cores associated with luminous O and B stars. We will show that this large body
of data, gathered during the last decade, has allowed significant progress in
the understanding of the physical processes that take place during the
formation and early evolution of massive stars.Comment: Pub. Astron. Soc. of Pacific (Invited Review), 95 pages (Latex), 5
pages (tables, Latex), 11 postscript or gif figure
Principles of genetic circuit design
Cells navigate environments, communicate and build complex patterns by initiating gene expression in response to specific signals. Engineers seek to harness this capability to program cells to perform tasks or create chemicals and materials that match the complexity seen in nature. This Review describes new tools that aid the construction of genetic circuits. Circuit dynamics can be influenced by the choice of regulators and changed with expression 'tuning knobs'. We collate the failure modes encountered when assembling circuits, quantify their impact on performance and review mitigation efforts. Finally, we discuss the constraints that arise from circuits having to operate within a living cell. Collectively, better tools, well-characterized parts and a comprehensive understanding of how to compose circuits are leading to a breakthrough in the ability to program living cells for advanced applications, from living therapeutics to the atomic manufacturing of functional materials.National Institute of General Medical Sciences (U.S.) (Grant P50 GM098792)National Institute of General Medical Sciences (U.S.) (Grant R01 GM095765)National Science Foundation (U.S.). Synthetic Biology Engineering Research Center (EEC0540879)Life Technologies, Inc. (A114510)National Science Foundation (U.S.). Graduate Research FellowshipUnited States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant 4500000552
Online Stakeholder Interactions in the Early Stage of a Megaproject
The purpose of this paper is to examine the network structure of online stakeholder discussions in the planning stage of a UK public mega project, High Speed Rail. By providing new rail connections between London, Birmingham and Manchester, this project is highly complex as it is embedded in a network of stakeholder relationships that may support or oppose the project. Data drawn from Twitter was analyzed using Social Network Analysis and inductive analysis of user profiles and content. Findings indicate that the majority of online stakeholders oppose the project and form stable clusters. Larger clusters within this network may attempt to deploy power directly in the form of a manipulation strategy while smaller clusters may seek to ally themselves with more powerful groups, a pathway strategy. Overall, the methodology is a useful complement to existing methods and may provide real time insights into the complex, evolving discussions around mega projects
Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants
Vitiligo is an autoimmune disease in which depigmented skin results from the destruction of melanocytes1, with epidemiological association with other autoimmune diseases2. In previous linkage and genome-wide association studies (GWAS1 and GWAS2), we identified 27 vitiligo susceptibility loci in patients of European ancestry. We carried out a third GWAS (GWAS3) in European-ancestry subjects, with augmented GWAS1 and GWAS2 controls, genome-wide imputation, and meta-analysis of all three GWAS, followed by an independent replication. The combined analyses, with 4,680 cases and 39,586 controls, identified 23 new significantly associated loci and 7 suggestive loci. Most encode immune and apoptotic regulators, with some also associated with other autoimmune diseases, as well as several melanocyte regulators. Bioinformatic analyses indicate a predominance of causal regulatory variation, some of which corresponds to expression quantitative trait loci (eQTLs) at these loci. Together, the identified genes provide a framework for the genetic architecture and pathobiology of vitiligo, highlight relationships with other autoimmune diseases and melanoma, and offer potential targets for treatment
- …
