2,505 research outputs found

    On Gravitational Waves in Spacetimes with a Nonvanishing Cosmological Constant

    Full text link
    We study the effect of a cosmological constant Λ\Lambda on the propagation and detection of gravitational waves. To this purpose we investigate the linearised Einstein's equations with terms up to linear order in Λ\Lambda in a de Sitter and an anti-de Sitter background spacetime. In this framework the cosmological term does not induce changes in the polarization states of the waves, whereas the amplitude gets modified with terms depending on Λ\Lambda. Moreover, if a source emits a periodic waveform, its periodicity as measured by a distant observer gets modified. These effects are, however, extremely tiny and thus well below the detectability by some twenty orders of magnitude within present gravitational wave detectors such as LIGO or future planned ones such as LISA.Comment: 8 pages, 4 figures, accepted for publication in Physical Review

    Satellite data relay and platform locating in oceanography. Report of the In Situ Ocean Science Working Group

    Get PDF
    The present and future use of satellites to locate offshore platforms and relay data from in situ sensors to shore was examined. A system of the ARGOS type will satisfy the increasing demand for oceanographic information through data relay and platform location. The improved ship navigation provided by the Global Positioning System (GPS) will allow direct observation of currents from underway ships. Ocean systems are described and demand estimates on satellite systems are determined. The capabilities of the ARGOS system is assessed, including anticipated demand in the next decade

    Lithofacies Control in Detrital Zircon Provenance Studies: Insights from the Cretaceous Methow Basin, Southern Canadian Cordillera

    Get PDF
    High-frequency sampling for detrital zircon analysis can provide a detailed record of fine-scale basin evolution by revealing the temporal and spatial variability of detrital zircon ages within clastic sedimentary successions. This investigation employed detailed sampling of two sedimentary successions in the Methow/Methow-Tyaughton basin of the southern Canadian Cordillera to characterize the heterogeneity of detrital zircon signatures within single lithofacies and assess the applicability of detrital zircon analysis in distinguishing fine-scale provenance changes not apparent in lithologic analysis of the strata. The Methow/Methow-Tyaughton basin contains two distinct stratigraphic sequences of middle Albian to Santonian clastic sedimentary rocks: submarine-fan deposits of the Harts Pass Formation/Jackass Mountain Group and fluvial deposits of the Winthrop Formation. Although both stratigraphic sequences displayed consistent ranges in detrital zircon ages on a broad scale, detailed sampling within each succession revealed heterogeneity in the detrital zircon age distributions that was systematic and predictable in the turbidite succession but unpredictable in the fluvial succession. These results suggest that a high-density sampling approach permits interpretation of fine-scale changes within a lithologically uniform turbiditic sedimentary succession, but heterogeneity within fluvial systems may be too large and unpredictable to permit accurate fine-scale characterization of the evolution of source regions. The robust composite detrital zircon age signature developed for these two successions permits comparison of the Methow/Methow-Tyaughton basin age signature with known plutonic source-rock ages from major plutonic belts throughout the Cretaceous North American margin. The Methow/Methow-Tyaughton basin detrital zircon age signature matches best with source regions in the southern Canadian Cordillera, requiring that the basin developed in close proximity to the southern Canadian Cordillera and providing evidence against large-scale dextral translation of the Methow terrane

    The onset of a small-scale turbulent dynamo at low magnetic Prandtl numbers

    Full text link
    We study numerically the dependence of the critical magnetic Reynolds number Rmc for the turbulent small-scale dynamo on the hydrodynamic Reynolds number Re. The turbulence is statistically homogeneous, isotropic, and mirror--symmetric. We are interested in the regime of low magnetic Prandtl number Pm=Rm/Re<1, which is relevant for stellar convective zones, protostellar disks, and laboratory liquid-metal experiments. The two asymptotic possibilities are Rmc->const as Re->infinity (a small-scale dynamo exists at low Pm) or Rmc/Re=Pmc->const as Re->infinity (no small-scale dynamo exists at low Pm). Results obtained in two independent sets of simulations of MHD turbulence using grid and spectral codes are brought together and found to be in quantitative agreement. We find that at currently accessible resolutions, Rmc grows with Re with no sign of approaching a constant limit. We reach the maximum values of Rmc~500 for Re~3000. By comparing simulations with Laplacian viscosity, fourth-, sixth-, and eighth-order hyperviscosity and Smagorinsky large-eddy viscosity, we find that Rmc is not sensitive to the particular form of the viscous cutoff. This work represents a significant extension of the studies previously published by Schekochihin et al. 2004, PRL 92, 054502 and Haugen et al. 2004, PRE, 70, 016308 and the first detailed scan of the numerically accessible part of the stability curve Rmc(Re).Comment: 4 pages, emulateapj aastex, 2 figures; final version as published in ApJL (but with colour figures

    Method to estimate ISCO and ring-down frequencies in binary systems and consequences for gravitational wave data analysis

    Get PDF
    Recent advances in the description of compact binary systems have produced gravitational waveforms that include inspiral, merger and ring-down phases. Comparing results from numerical simulations with those of post-Newtonian (PN), and related, expansions has provided motivation for employing PN waveforms in near merger epochs when searching for gravitational waves and has encouraged the development of analytic fits to full numerical waveforms. The models and simulations do not yet cover the full binary coalescence parameter space. For these yet un-simulated regions, data analysts can still conduct separate inspiral, merger and ring-down searches. Improved knowledge about the end of the inspiral phase, the beginning of the merger, and the ring-down frequencies could increase the efficiency of both coherent inspiral-merger-ring-down (IMR) searches and searches over each phase separately. Insight can be gained for all three cases through a recently presented theoretical calculation, which, corroborated by the numerical results, provides an implicit formula for the final spin of the merged black holes, accurate to within 10% over a large parameter space. Knowledge of the final spin allows one to predict the end of the inspiral phase and the quasinormal mode ring-down frequencies, and in turn provides information about the bandwidth and duration of the merger. In this work we will discuss a few of the implications of this calculation for data analysis.Comment: Added references to section 3 14 pages 5 figures. Submitted to Classical and Quantum Gravit

    Binary black hole merger in the extreme mass ratio limit

    Get PDF
    We discuss the transition from quasi-circular inspiral to plunge of a system of two nonrotating black holes of masses m1m_1 and m2m_2 in the extreme mass ratio limit m1m2(m1+m2)2m_1m_2\ll (m_1+m_2)^2. In the spirit of the Effective One Body (EOB) approach to the general relativistic dynamics of binary systems, the dynamics of the two black hole system is represented in terms of an effective particle of mass μm1m2/(m1+m2)\mu\equiv m_1m_2/(m_1+m_2) moving in a (quasi-)Schwarzschild background of mass Mm1+m2M\equiv m_1+m_2 and submitted to an O(μ){\cal O}(\mu) radiation reaction force defined by Pad\'e resumming high-order Post-Newtonian results. We then complete this approach by numerically computing, \`a la Regge-Wheeler-Zerilli, the gravitational radiation emitted by such a particle. Several tests of the numerical procedure are presented. We focus on gravitational waveforms and the related energy and angular momentum losses. We view this work as a contribution to the matching between analytical and numerical methods within an EOB-type framework.Comment: 14 pages, six figures. Revised version. To appear in the CQG special issue based around New Frontiers in Numerical Relativity conference, Golm (Germany), July 17-21 200

    Non-relativistic limit of Randall-Sundrum model: solutions, applications and constraints

    Full text link
    In the Randall-Sundrum model with one brane, we found the approximate and exact solutions for gravitational potentials and accelerations of test bodies in these potentials for different geometrical configurations. We applied these formulas for calculation of the gravitational interaction between two spheres and found the approximate and exact expressions for the relative force corrections to the Newton's gravitational force. We demonstrated that the difference between relative force corrections for the approximate and exact cases increases with the parameter ll (for the fixed distance rr between centers of the spheres). On the other hand, this difference increases with decreasing of the distance between the centers of the spheres (for the fixed curvature scale parameter ll). We got the upper limit for the curvature scale parameter l10μl\lesssim 10\, \mum. For these values of ll, the difference between the approximate and exact solutions is negligible.Comment: LaTex 11 pages, 3 figure

    Cultured lymphocytes’ mitochondrial genome integrity is not altered by cladribine

    Get PDF
    Cladribine tablets are a treatment for multiple sclerosis with effects on lymphocytes, yet its mode of action has not been fully established. Here, we analyzed the effects of cladribine on mitochondrial DNA integrity in lymphocytes. We treated cultured human T-cell lines (CCRF-CEM and Jurkat) with varying concentrations of cladribine to mimic the slow cell depletion observed in treated patients. The CCRF-CEM was more susceptible to cladribine than Jurkat cells. In both cells, mitochondrial protein synthesis, mitochondrial DNA copy number, and mitochondrial cytochrome-c oxidase-I mRNA mutagenesis was not affected by cladribine, while caspase-3 cleavage was detected in Jurkat cells at 100 nM concentration. Cladribine treatment at concentrations up to 10 nM in CCRF-CEM and 100 nM in Jurkat cells did not induce significant increase in mitochondrial DNA mutations. Peripheral blood mononuclear cells from eight multiple sclerosis patients and four controls were cultured with or without an effective dose of cladribine (5 nM). However, we did not find any differences in mitochondrial DNA somatic mutations in lymphocyte subpopulations (CD4+, CD8+, and CD19+) between treated versus nontreated cells. The overall mutation rate was similar in patients and controls. When different lymphocyte subpopulations were compared, greater mitochondrial DNA mutation levels were detected in CD8+ (P = 0.014) and CD4+ (P = 0.038) as compared to CD19+ cells, these differences were independent of cladribine treatment. We conclude that T cells have more detectable mitochondrial DNA mutations than B cells, and cladribine has no detectable mutagenic effect on lymphocyte mitochondrial genome nor does it impair mitochondrial function in human T-cell lines

    Turbulent spectrum of the Earth's ozone field

    Full text link
    The Total Ozone Mapping Spectrometer (TOMS) database is subjected to an analysis in terms of the Karhunen-Loeve (KL) empirical eigenfunctions. The concentration variance spectrum is transformed into a wavenumber spectrum, Ec(k)% E_c(k). In terms of wavenumber Ec(k)E_c(k) is shown to be O(k2/3)O(k^{-2/3}) in the inverse cascade regime, O(k2)O(k^{-2}) in the enstrophy cascade regime with the spectral {\it knee} at the wavenumber of barotropic instability.The spectrum is related to known geophysical phenomena and shown to be consistent with physical dimensional reasoning for the problem. The appropriate Reynolds number for the phenomena is Re1010Re\approx 10^{10}.Comment: RevTeX file, 4 pages, 4 postscript figures available upon request from Richard Everson <[email protected]

    Surviving critical illness: what is next? An expert consensus statement on physical rehabilitation after hospital discharge

    Get PDF
    Background: The study objective was to obtain consensus on physical therapy (PT) in the rehabilitation of critical illness survivors after hospital discharge. Research questions were: what are PT goals, what are recommended measurement tools, and what constitutes an optimal PT intervention for survivors of critical illness? Methods: A Delphi consensus study was conducted. Panelists were included based on relevant fields of expertise, years of clinical experience, and publication record. A literature review determined five themes, forming the basis for Delphi round one, which was aimed at generating ideas. Statements were drafted and ranked on a 5-point Likert scale in two additional rounds with the objective to reach consensus. Results were expressed as median and semi-interquartile range, with the consensus threshold set at ≤0.5. Results: Ten internationally established researchers and clinicians participated in this Delphi panel, with a response rate of 80 %, 100 %, and 100 % across three rounds. Consensus was reached on 88.5 % of the statements, resulting in a framework for PT after hospital discharge. Essential handover information should include information on 15 parameters. A core set of outcomes should test exercise capacity, skeletal muscle strength, function in activities of daily living, mobility, quality of life, and pain. PT interventions should include functional exercises, circuit and endurance training, strengthening exercises for limb and respiratory muscles, education on recovery, and a nutritional component. Screening tools to identify impairments in other health domains and referral to specialists are proposed. Conclusions: A consensus-based framework for optimal PT after hospital discharge is proposed. Future research should focus on feasibility testing of this framework, developing risk stratification tools and validating core outcome measures for ICU survivors
    corecore