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ABSTRACT

High-frequency sampling for detrital zir-
con analysis can provide a detailed record
of fine-scale basin evolution by revealing
the temporal and spatial variability of de-
trital zircon ages within clastic sedimentary
successions. This investigation employed
detailed sampling of two sedimentary suc-
cessions in the Methow/Methow-Tyaughton
basin of the southern Canadian Cordillera
to characterize the heterogeneity of detrital
zircon signatures within single lithofacies
and assess the applicability of detrital zir-
con analysis in distinguishing fine-scale
provenance changes not apparent in litho-
logic analysis of the strata. The Methow/
Methow-Tyaughton basin contains two dis-
tinct stratigraphic sequences of middle
Albian to Santonian clastic sedimentary
rocks: submarine-fan deposits of the Harts
Pass Formation/Jackass Mountain Group
and fluvial deposits of the Winthrop For-
mation. Although both stratigraphic se-
quences displayed consistent ranges in de-
trital zircon ages on a broad scale, detailed
sampling within each succession revealed
heterogeneity in the detrital zircon age dis-
tributions that was systematic and predict-
able in the turbidite succession but unpre-
dictable in the fluvial succession. These
results suggest that a high-density sampling
approach permits interpretation of fine-
scale changes within a lithologically uni-
form turbiditic sedimentary succession, but

†E-mail: ksurpless@stanford.edu.

heterogeneity within fluvial systems may be
too large and unpredictable to permit ac-
curate fine-scale characterization of the
evolution of source regions. The robust
composite detrital zircon age signature de-
veloped for these two successions permits
comparison of the Methow/Methow-
Tyaughton basin age signature with known
plutonic source-rock ages from major plu-
tonic belts throughout the Cretaceous
North American margin. The Methow/
Methow-Tyaughton basin detrital zircon
age signature matches best with source re-
gions in the southern Canadian Cordillera,
requiring that the basin developed in close
proximity to the southern Canadian Cor-
dillera and providing evidence against
large-scale dextral translation of the Meth-
ow terrane.

Keywords: provenance, zircon, Methow
Basin, Canadian Cordillera, Baja BC hy-
pothesis, Kolmogorov-Smirnov test.

INTRODUCTION

Detrital zircon age distributions from clastic
sedimentary strata provide critical constraints
on basin evolution, tectonic history, and pa-
leogeography (e.g., Ross and Bowring, 1990;
Gehrels and Dickinson, 1995; Mahoney et al.,
1999; Gehrels, 2000, and references therein;
DeGraaff-Surpless et al., 2002). By identify-
ing a spectrum of grain ages that approximates
the age distribution of geologic units within a
source region, detrital zircon analysis can de-
fine sedimentary provenance and may help

characterize spatial and temporal variations in
sediment supply to a depocenter. Critical to
accurate provenance analysis is the establish-
ment of a detrital zircon age signature that ac-
counts for the influence of sedimentologic and
depositional processes on the lateral and ver-
tical distribution of the detrital zircons within
sedimentary successions. Within a single sed-
imentary succession, high-frequency sampling
should provide a detailed record of basin evo-
lution, but the reliability of this record de-
pends on adequate characterization of the het-
erogeneity of the detrital zircon signature.

This investigation utilized a detailed and
systematic sampling strategy to examine the
temporal and spatial variability of the detrital
zircon signature from two sedimentary suc-
cessions deposited in the same depocenter but
under very different depositional conditions.
The composite Methow/Methow-Tyaughton
basin of the southern Canadian Cordillera con-
tains thick successions of clastic strata depos-
ited in marine and terrestrial environments. The
Harts Pass Formation/Jackass Mountain Group
succession was deposited in a submarine-fan
system in a forearc setting adjacent to a dis-
sected volcanic arc during Albian time, and
the overlying Albian–Cenomanian Winthrop
Formation was deposited within a braided flu-
vial system also derived from a dissected vol-
canic arc. Each succession is dominated by
thick deposits of similar and apparently ho-
mogeneous feldspathic litharenite, and the de-
positional setting of each unit is well defined
by detailed lithofacies analysis (Coates, 1974;
Barksdale, 1975; Kleinspehn, 1985; Haugerud
et al., 1996; Kiessling, 1998). We used vari-



900 Geological Society of America Bulletin, August 2003

DEGRAAFF-SURPLESS et al.

able vertical and horizontal sampling densities
in each succession to (1) evaluate the relation-
ship between lithofacies and detrital zircon
signatures by characterizing the heterogeneity
of detrital zircon signatures within each suc-
cession, (2) assess the applicability of detrital
zircon analysis in characterizing fine-scale
provenance changes not apparent in lithologic
analysis of the strata, and (3) develop a com-
posite detrital zircon age signature for both
successions that can then be compared to ages
in potential source regions to test tectonic
models of terrane translation.

The results of this fine-scale detrital zircon
analysis demonstrate that the degree of ho-
mogenization of detrital zircon age distribu-
tions is directly related to the depositional en-
vironment. On a broad scale, both the Harts
Pass Formation/Jackass Mountain Group and
the Winthrop Formation had consistent ranges
in detrital zircon ages. However, on a finer
scale, both successions displayed significant
heterogeneity in the detrital zircon age distri-
butions; greater heterogeneity was present in
the fluvial Winthrop Formation than in the tur-
biditic Harts Pass Formation/Jackass Moun-
tain Group. Furthermore, variability within the
turbidite succession was systematic and pre-
dictable; heterogeneity in the fluvial succes-
sion was unpredictable and therefore difficult
to interpret. These results suggest that a high-
resolution sampling approach permits inter-
pretation of systematic temporal changes
within a turbiditic sedimentary succession,
such as the Harts Pass Formation, but hetero-
geneity within fluvial systems, such as the
Winthrop Formation, is too large and unpre-
dictable to permit accurate fine-scale charac-
terization of the evolution of source regions,
even with a large number of samples. These
results also highlight the need for detailed lith-
ofacies analysis prior to development of a
sampling strategy designed to elucidate basin
evolution.

The robust composite detrital zircon age
signature developed for these two successions
provides critical constraints on the ages of po-
tential source regions for the Cretaceous strata
of the Methow terrane, an allochthonous fault-
bounded sequence with a controversial tecton-
ic translation history. The Methow/Methow-
Tyaughton basin detrital zircon age signature
indicates that the basin most likely developed
in close proximity to the southern Canadian
Cordillera, providing evidence against large-
scale translation of the Methow terrane from
a southern source region.

SEDIMENTARY SYSTEMS AND
SAMPLING STRATEGY

The scale of the basinal succession is an
important consideration in provenance analy-
sis. The degree of sediment homogenization,
and therefore homogenization of detrital zir-
con age distributions, is a direct function of
the scale of the system under consideration
and the transport mechanisms operative within
that system. Ingersoll et al. (1993) demonstrat-
ed the effects of variable sampling scale on
sand composition in petrofacies analysis, and
the same concepts are useful for the establish-
ment of an efficient sampling protocol for de-
trital zircon analysis. The following basin hi-
erarchy is modified from Ingersoll (1990;
Ingersoll et al., 1993):

1. First-order sediment systems are associ-
ated with local drainages that sample individ-
ual lithologic units or groups of units. Sedi-
ment in these systems tends to be immature,
and the detrital zircon signature directly re-
flects the heterogeneity of the source area
(Dickinson and Gehrels, 2000). Abrupt lateral
and vertical variations in detrital zircon com-
position may record tectonic events in the
source region. These systems tend to be are-
ally restricted and rapidly commingle with ad-
jacent first-order systems.

2. Second-order sediment systems are con-
tinental and marginal-marine basins associated
with large, coalescing river systems and as-
sociated submarine-fan systems that effective-
ly sample at the scale of mountain ranges, in-
cluding magmatic arcs and fold-and-thrust
belts (Ingersoll et al., 1993). Sediment tends
to be submature and has undergone substantial
modification as a result of weathering and
transport. The detrital zircon signature reflects
the gradual homogenization of detrital grains,
but may be subject to rapid spatial and tem-
poral fluctuations as a function of lithologic
heterogeneity and episodic tectonism in the
source region.

3. Third-order sediment systems are those
associated with large rivers draining signifi-
cant parts of a continent and include deltaic
and shallow-marine sediments along passive
continental margins (Ingersoll et al., 1993).
Considerable homogenization and composi-
tional stabilization occurs in third-order sys-
tems, owing to prolonged chemical and phys-
ical disintegration of the principal detrital
components and concentration of resistant
heavy minerals such as zircon. This homoge-
nization suggests that these systems should be
characterized by laterally consistent detrital
zircon signatures that vary on the scale of
hundreds of kilometers (e.g., Gehrels et al.,

1995). Large river systems and associated del-
tas built along active margins are also consid-
ered third order, but admixtures from less ma-
ture systems commonly complicate their
detrital signature. Examples include the east-
ern North American continental shelf and the
Amazon deltaic system.

Any individual basin may contain more
than one order of sedimentary system; for ex-
ample, the modern Gulf of Mexico contains
first-, second-, and third-order sediment sys-
tems, depending on the part of the depocenter
studied (Galloway and Williams, 1991).

GEOLOGIC SETTING

The Methow and Methow-Tyaughton ba-
sins of the southern Canadian Cordillera con-
tain Jurassic and Cretaceous strata that overlie
allochthonous Triassic oceanic crust of the
Methow terrane (Figs. 1 and 2). The Creta-
ceous parts of the basin contain more than 6
km of middle Albian to Santonian sedimen-
tary and volcanic rocks that constitute an
overall shallowing-upward succession subdi-
vided into two stratigraphic sequences. The
lower succession, deposited in the Methow
Basin, contains Albian rocks of the Harts Pass
Formation and the Jackita Ridge and Little
Jack units in Washington State and the upper
Jackass Mountain Group in southern British
Columbia (Fig. 3; Coates, 1974; Barksdale,
1975). The upper succession, deposited in the
Methow-Tyaughton basin, consists of lower
Cenomanian to Santonian strata of the Pasay-
ten Group (Fig. 3; Barksdale, 1975; Garver,
1992; Kiessling and Mahoney, 1997). The
contact between the Pasayten Group and un-
derlying middle Albian strata of the lower
succession is primarily an angular unconfor-
mity, although feldspathic sandstone of the
Pasayten Group gradationally overlies com-
positionally similar rocks of the upper Jackass
Mountain Group along the preserved eastern
margin of the basin. This investigation focuses
on middle to Upper Cretaceous fill of the com-
bined Methow/Methow-Tyaughton system;
the overall Jurassic to Cretaceous evolution of
the basin is complex and beyond the scope of
this study.

Structural Setting

Cretaceous strata overlying the Methow ter-
rane are exposed in an elongate structural
block bound on the east by the Pasayten fault
system and on the west by the Ross Lake and
Fraser–Straight Creek fault systems (Fig. 1).
The Methow terrane was imbricated structur-
ally with the Bridge River and Cadwallader
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Figure 1. Regional geologic map of the southern Canadian Cordillera, showing distribution of terranes and major structural features
(HF—Hozameen fault; RLF—Ross Lake fault; PF—Pasayten fault; F-SCF—Fraser–Straight Creek fault system). The box labeled Figure
4 shows the location of this study.

Figure 2. Tectonostratigraphic nomencla-
ture within the southern Canadian Cordil-
lera. Queries indicate timing of proposed
stratigraphic linkages (Umhoefer, 1988;
Garver, 1992; Mahoney and Journeay,
1993; Mahoney, 1994; Schiarizza and Pay-
ie, 1997).

Figure 3. Generalized stratigraphy of the Pasayten Group and underlying strata. Adapted
from Coates (1974), Haugerud et al. (1996), and Kiessling (1998).
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Figure 4. Geologic map of the southern Methow block, showing major structures and rock units discussed in text. Stars indicate the
locations of the stratigraphic sections sampled during this study (JM—Jackass Mountain Group, MP—Manning Park, Winthrop For-
mation, HP—Harts Pass Formation, SB—Sandy Butte, Winthrop Formation). Map compiled from Coates (1974), Bunning (1990), Tabor
et al. (1994), Dragovich and Norman (1995), and Haugerud (1999, personal commun.).

terranes along its western margin during Cen-
omanian time (Figs. 1 and 4; Journeay and
Friedman, 1993). Along the eastern margin of
the Methow terrane, the Pasayten fault has a
multistage deformational history that includes

Late Cretaceous sinistral displacement, Late
Cretaceous to Tertiary west-vergent contrac-
tional motion, and Tertiary extension (Hurlow,
1993). Seismic reflection data indicate that the
Pasayten fault dips eastward, juxtaposing Cre-

taceous volcano-plutonic rocks of Quesnellia
over sedimentary successions of the Methow/
Methow-Tyaughton basin (Figs. 1, 4; Varsek
et al., 1993).

Paleomagnetic data from the Intermontane
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and Insular superterranes have been interpret-
ed to suggest that the modern Pasayten fault
is coincident with the principal locus of (1) as
much as 3000 km of dextral translation that
occurred between 85 and 50 Ma (e.g., Wynne
et al., 1995; Irving et al., 1996), or (2) less
than 1500 km of translation (e.g., Butler et al.,
1989; Kodama and Ward, 2001). Therefore,
rocks on opposite sides of the modern Pasay-
ten fault may or may not have been in geo-
graphic proximity in the Late Cretaceous, and
strata of the Methow/Methow-Tyaughton ba-
sin may be cut off from their eastern source.

Sedimentary Successions and Basin Order

The Harts Pass Formation and upper Jackass
Mountain Group consist of more than 2.5 km
of medium- to coarse-grained, well-stratified
quartzofeldspathic arenite and minor plutonic
conglomerate. Underlying Neocomian to low-
er Albian shallow-marine strata limit the max-
imum depositional age of the Harts Pass For-
mation to early to middle Albian. Graded
bedding, scours, and loads at the base of beds,
parallel and cross-lamination, pelitic rip-up
clasts, amalgamated sandstone intervals, lat-
erally continuous beds, and cyclic bedding
repetition indicate sub-wave-base turbidite de-
position (Coates, 1974; Barksdale, 1975; Ten-
nyson and Cole, 1978; Kleinspehn, 1985;
Haugerud et al., 1996). Paleocurrent analysis
(n 5 122) of ripple cross-laminations, groove
casts, and other features indicate west-directed
transport (mean direction 5 2968; Tennyson
and Cole, 1978). A westward decrease in bed-
ding thickness, sand/shale ratio, and maxi-
mum grain size also supports an eastern
source. Tennyson and Cole (1978) interpreted
these strata as unchannelized mid-fan deposits
of a west-facing middle Albian submarine-fan
succession. The apparent lateral and vertical
compositional and sedimentologic homoge-
neity of the succession through more than 2.5
km of section along more than 60 km of strike
length suggests that the Harts Pass Formation
and the upper Jackass Mountain Group rep-
resent deposition in a stable second-order sed-
iment system.

The Pasayten Group consists of more than
2.4 km of medium- to coarse-grained chert
lithic to quartzofeldspathic sandstone, poly-
mict conglomerate, and lesser andesitic vol-
canic flows and associated volcaniclastic stra-
ta. Westerly-derived chert lithic detritus of the
Virginian Ridge Formation interfingers along
the basin axis with easterly-derived quartzo-
feldspathic arenite of the Winthrop Formation
(Fig. 3). These units are gradationally to un-
conformably overlain by volcanic and volcan-

iclastic rocks of the Ventura Member of the
Goat Wall unit (Fig. 3; Barksdale, 1975; Ten-
nyson and Cole, 1978; Kiessling and Maho-
ney, 1997; Kiessling, 1998). This investiga-
tion concentrates on the Winthrop Formation
of the Pasayten Group, which is early Ceno-
manian to Coniacian (98–87 Ma) in age, on
the basis of detrital zircons, crosscutting dikes,
and the age of the overlying Goat Wall unit
(Haugerud et al., 1996).

High-angle cross-stratification, lenticular
conglomerate, in situ tree stumps, abundant
plant debris, subaerial lava flows and breccias,
and rare marine bivalves indicate that the Pa-
sayten Group was deposited by braided to me-
andering streams that locally prograded into a
marginal-marine environment (Coates, 1974;
Barksdale, 1975; Kiessling, 1998). Facies var-
iations, subsidence rates, and the intimate as-
sociation between sedimentation and contrac-
tional deformation suggest that the Pasayten
Group accumulated in a complex hybrid fore-
arc/foreland-basin setting resulting from epi-
sodic tectonism in an east-vergent fold-and-
thrust system to the west, coupled with rapid
uplift and erosion of a partly dissected vol-
canic arc assemblage to the east (Haugerud et
al., 1996; Kiessling, 1998). The complex stra-
tigraphy and paleocurrent pattern, rapid lateral
and vertical compositional changes, and sed-
imentologic heterogeneity indicate that the
Pasayten Group formed in a first- to second-
order sediment system (Kiessling and Maho-
ney, 1997; Kiessling, 1998).

METHODOLOGY

Sampling Strategy

Determination of a detrital zircon age sig-
nature that fully characterizes both stratigraphic
sequences of the Methow/Methow-Tyaughton
basin requires a sampling density sufficiently
detailed to permit recognition of temporal and
spatial variations in detrital zircon age distri-
butions within continuous and lithologically
homogeneous stratigraphic sections.

Coeval stratigraphic sections of the Win-
throp Formation were sampled at Sandy Butte
in the southern part of the basin and ;75 km
to the north in Manning Park in the northern
part of the basin (Fig. 4). Through a detailed
analysis of the stratigraphy and sedimentary
petrology of the Pasayten Group, Kiessling
(1998) demonstrated that the Winthrop For-
mation was a strikingly homogeneous mica-
ceous feldspathic arenite deposited in a braid-
ed fluvial system draining a dissected volcanic
arc assemblage. Following the Sandy Butte
stratigraphy detailed by Kiessling (1998), we

sampled from the base, middle, and upper
parts of a 1.5-km-thick section, separating the
samples by ;600 m of true section thickness.
To assess the heterogeneity of the detrital zir-
con signature, we collected samples spaced 10
m above and 10 m below the uppermost Win-
throp sample. In the northern part of the basin,
we followed the same protocol, collecting four
samples from the Winthrop Formation in
Manning Park, including one sample from the
lower part of the formation and three samples
from the middle of the formation spaced ;15
vertical meters apart.

We used a similar procedure to sample the
Harts Pass Formation in the southern part of
the basin (Fig. 4), sampling from the base,
middle, and upper levels of the stratigraphic
section with ;1000 m of section between
samples. Three samples spaced 15 m apart
were collected from the uppermost Harts Pass
Formation to assess rapid variations in detrital
zircon signature. Sampling of the coeval Jack-
ass Mountain Group in the northern part of
the basin was hampered by a lack of biostrati-
graphic control. Our collections were limited
to two samples, spaced ;500 m apart, from
the upper part of the Jackass Mountain Group
as defined by Coates (1974).

Analytical Methods

Samples consisted of 2–6 kg of medium-
grained lithic feldspathic to feldspathic are-
nite. Zircon was isolated following standard
density and magnetic separation techniques
(see Appendix). To eliminate bias introduced
during handpicking, no visual morphologic or
color differentiation was made. The total zir-
con grain population was subdivided en masse
to provide a random subset of the entire pop-
ulation. Grains were mounted in epoxy, pol-
ished to half of mean grain thickness, and im-
aged with transmitted and reflected light and
cathodoluminescence to illuminate internal
structures. No distinct inherited cores were
visible in cathodoluminescence, and many
grains showed well-developed oscillatory
zoning.

The statistical adequacy assessment of Dod-
son et al. (1988) states that 59 grains must be
analyzed to achieve 95% confidence of finding
every population that exists at the 5% level in
a given sample, according to the equation P
5 (1—ƒ)n, where P is the probability of miss-
ing a provenance component, ƒ is the propor-
tion of that component in the total population,
and n is the number of grains analyzed. All of
the samples presented here consist of 60 in-
dividual analyses.

Pb/U ratios were calibrated with reference
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Figure 5. Discordance of young zircon is estimated with Tera-Wasserburg concordia diagrams. (A) Uncorrected data for sample KD3
(lower Harts Pass Formation) are plotted on a Tera-Wasserburg concordia, and discordance is estimated by using a mixing line between
a common-Pb ratio and concordia. KD3 data fall within 20% of concordia. (B) A closer look at KD3 data reveals a strong tendency off
concordia toward the common-Pb ratio. (C) A plot of U concentration against 207Pb/206Pb ratios (a reasonable proxy for discordance
where ages are young enough to plot on the near-horizontal part of the Tera-Wasserburg concordia) shows that the grains with low U
concentrations are the most discordant.

to standard zircon AS57 (standard age 5 1099
Ma; Paces and Miller, 1993), which was an-
alyzed after every fourth or fifth analysis of
an unknown zircon (see Appendix). U and Th
concentrations were calibrated to standard
SL13 (Williams, 1998). All ages reported are
based on the measured 206Pb/238U ratio cali-
brated to the 206Pb/238U ratio in the AS57 stan-
dard and corrected for common Pb by assum-
ing concordance and using the model of
Cumming and Richards (1975).1

Assessing and Interpreting Discordance

Because of the small amount of radiogenic
Pb in Mesozoic zircon, 207Pb/206Pb and 207Pb/
235U ages determined by the ion microprobe
have high uncertainties and cannot be used to
evaluate discordance. However, if we assume
that common Pb is the most significant factor
in producing discordance toward a common-
Pb 207Pb/206Pb ratio (0.86 6 0.06; Cumming
and Richards, 1975), then a common-Pb cor-
rection provides acceptable estimates of true
ages. This is a reasonable assumption for the
Mesozoic zircon grains in the Methow/Methow-
Tyaughton basin for several reasons: (1) grains
show well-developed oscillatory zoning and
no visible evidence for inherited cores, sug-
gesting that they are first-cycle magmatic
grains (Hanchar and Miller, 1993); (2) the
grains plot in clusters on a Tera-Wasserburg

1GSA Data Repository item 2003104, Age data
for Methow/Methow-Tyaughton basin samples, is
available on the Web at http://www.geosociety.org/
pubs/ft2003.htm. Requests may also be sent to
editing@geosociety.org.

diagram, lending significance to the ages be-
cause the probability of grains with complex
discordance histories falling into clusters is
slight (Fig. 5; Gehrels, 2000); (3) data that
plot above concordia fit a mixing line toward
a 207Pb/206Pb ratio for common Pb (0.86) and
do not fit a mixing line toward older ages
(Figs. 5A and 5B); and (4) the most discordant
data generally have the lowest concentration
of U (less than 100 ppm). Low U concentra-
tion means little radiogenic Pb in the zircon
(Fig. 5C), so a tiny amount of common Pb in
the sample has a much greater influence on
measured Pb ratios.

The Tera-Wasserburg concordia diagram
provides a graphical estimate of discordance
in young zircon grains by showing uncorrect-
ed 207Pb/206Pb ratios plotted against uncorrect-
ed 238U/206Pb ratios (Fig. 5). Discordance of
Mesozoic grains was estimated by determin-
ing where data fall on a mixing line from the
common-Pb value (207Pb/206Pb ratio of 0.86)
through the data to concordia. Data presented
herein include grains within 5% of concor-
dance as well as more discordant grains with
very low U concentrations. Data more than
5% discordant (207Pb/206Pb . 0.1) and with U
concentrations greater than 100 ppm have
been removed from further consideration. Out
of 960 grains analyzed during this study, 31
(3.2%) were deemed unsuitable for
consideration.

Statistical Methods

Detrital zircon age data are plotted as his-
tograms with superimposed probability den-

sity distributions in order to represent both the
age measurement and the associated uncer-
tainty (Figs. 6A–9A). To assess the heteroge-
neity of the age distributions within each of
the four stratigraphic sections, we compared
each sample age distribution within a strati-
graphic section with every other sample age
distribution within the same stratigraphic sec-
tion by using cumulative probability plots and
the Kolmogorov-Smirnov (K-S) two-sample
test (Figs. 6B–9B and Table 1; Berry et al.,
2001). The K-S test is a nonparametric statis-
tical method (it is independent of any as-
sumptions about the probability distribution of
a sample and allows comparison of both age
values [peak locations] and distributions [peak
shapes]) that returns the probability (P) that
two samples were drawn from the same pop-
ulation (e.g., Press et al., 1986; Berry et al.,
2001). The higher the P value, the more likely
it is that the two age distributions were drawn
from the same population. To be 95% confi-
dent that two populations are not statistically
different, the P value must exceed 0.05. The
cumulative probability curves, combined with
the P values, provide a useful means of as-
sessing heterogeneity within each stratigraphic
succession, comparing the level of heteroge-
neity between different sections, and observ-
ing trends within each section.

RESULTS

Harts Pass Formation and Jackass
Mountain Group

The detrital zircon age distributions of the
Harts Pass Formation are characterized by a
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Figure 6. (A) Age histograms and probability density distributions for the Harts Pass Formation. Detrital zircon age distributions are
keyed to a cartoon stratigraphic section to illustrate sample spacing. (B) Cumulative probability plots for all samples in the stratigraphic
section.

large Middle Jurassic peak and smaller Early
Jurassic and Cretaceous peaks throughout the
stratigraphic section (Fig. 6A). Samples from
the lower and middle parts of the section, sep-
arated by ;1000 m, are strikingly similar (P
5 0.398; Table 1) and are characterized by a
prominent bimodal Jurassic age distribution
(ca. 185–180 Ma and 165–160 Ma), a smaller

Early Cretaceous peak (ca. 120–115 Ma), and
a few Triassic (older than 200 Ma) ages. Three
closely spaced samples (;15 m between sam-
ples) from the upper part of the section have
P values ranging from 0.002 to 0.254 (Table
1), indicating significant similarities. Both the
reduction in the Early Cretaceous peak in the
uppermost samples and the increasing age of

the Jurassic peak up-section indicate a trend
toward older detrital zircon grains higher in
the section.

Statistical analysis suggests that the Harts
Pass Formation is heterogeneous (only 2 out
of 10 comparisons with P . 0.05; Table 1).
However, the consistency in the overall distri-
bution of the Harts Pass Formation age peaks
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Figure 7. (A) Age histograms and probability density distributions for the Jackass Mountain Group. Detrital zircon age distributions
are keyed to a cartoon stratigraphic section to illustrate sample spacing. (B) Cumulative probability plots for all samples in the strati-
graphic section.

is evident in the graphical comparisons pre-
sented in Figure 6. The cumulative probability
curves throughout the section have a similar
shape (Fig. 6B), indicating that the major peak
shapes throughout the stratigraphic section are
similar; the greatest variation occurs in the
younger part of the distributions. In addition,
the data show a systematic trend toward older
ages up-section (Fig. 6B).

The two Jackass Mountain Group detrital
zircon age distributions are dominated by
younger ages relative to the Harts Pass For-
mation age distributions and also contain a
small number of Carboniferous to Early Perm-
ian ages (Fig. 7A). Both samples display
prominent Early Cretaceous peaks (ca. 120–
110 Ma), and the lower sample contains a sig-
nificant Late Jurassic peak (ca. 150–140 Ma)
that is absent in the upper sample. Statistical
comparison of the two samples illustrates that
the younger part of the age distribution (youn-
ger than 120 Ma) is very similar between sam-
ples (Fig. 7B), but significant deviation be-
tween samples exists in the older detrital

zircon populations as a result of the near ab-
sence of Jurassic zircons in the uppermost
sample, resulting in a low P value of 0.003.

Further characterization of the variability of
the detrital zircon age signatures within the
Jackass Mountain Group and statistical com-
parison of the Jackass Mountain Group and
the Harts Pass Formation is hindered by the
lack of precise biostratigraphic control. Ex-
amination of the data suggests that both Jack-
ass Mountain Group samples and the lower
two Harts Pass Formation samples contain the
same major peaks (Early Cretaceous and Ju-
rassic) in reverse proportion, suggesting that
the Jackass Mountain Group may be correla-
tive with the lower part of the Harts Pass
succession.

Winthrop Formation

The Winthrop Formation in the southern
part of the Methow basin has a lower level of
heterogeneity than the Harts Pass Formation
(4 out of 10 comparisons with P . 0.05; Table

1), but the variability in the Winthrop is not
as systematic as in the Harts Pass Formation
(Fig. 8). The lowest sample, collected near the
base of the section at Sandy Butte, displays
peaks at ca. 165 Ma, ca. 150 Ma, and 120–
110 Ma and has a minor component of late
Paleozoic grains. The lower sample differs
significantly from all samples up-section (no
comparisons with P . 0.05; Table 1), and
there is a stronger degree of similarity be-
tween the middle sample and the three upper
samples than between the middle and the low-
er samples (Table 1). The middle sample at
Sandy Butte, collected ;1000 m above the
lowermost sample, is dominated by an Early
Jurassic peak (ca. 190–175 Ma) that is absent
lower in the section. Conversely, the promi-
nent Early Cretaceous peak (120–110 Ma) ev-
ident in the lower sample is strongly dimin-
ished in the middle sample. The three samples
from the upper part of the section are domi-
nated by bimodal Jurassic peaks (ca. 175–170
and 165–155 Ma) and are quite homogeneous
(P values range from 0.08 to 0.75; Table 1),
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Figure 8. (A) Age histograms and probability density distributions for the Winthrop Formation at Sandy Butte. Detrital zircon age
distributions are keyed to a cartoon stratigraphic section to illustrate sample spacing. (B) Cumulative probability plots for all samples
in the stratigraphic section.

although the middle of the three samples dis-
plays an Early Jurassic peak (ca. 190 Ma) not
evident in the other upper samples.

The sample suite from the northern Win-
throp Formation at Manning Park is the most
heterogeneous; five comparisons resulted in P
5 0, and only one comparison resulted in P
. 0.05 (Fig. 9 and Table 1). A Late Jurassic

peak (ca. 160 Ma) dominates the lowermost
sample and is greatly diminished in two of the
three samples higher in the section. The upper
three closely spaced samples differ signifi-
cantly from each other and the lower sample:
the lowest of the three samples contains major
Late Triassic to Early Jurassic peaks, the mid-
dle sample displays a shift to younger ages

with peaks at ca. 175–165 Ma and ca. 124–
120 Ma, and the upper sample contains a
range of ages including an Early Cretaceous
peak (135–110 Ma), and bimodal Jurassic
peaks (ca. 170 and 155 Ma). The upper two
of the closely spaced samples in the middle of
the formation are similar (P 5 0.179), but
they differ from both stratigraphically adjacent
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Figure 9. (A) Age histograms and probability density distributions for the Winthrop Formation at Manning Park. Detrital zircon age
distributions are keyed to a cartoon stratigraphic section to illustrate sample spacing. (B) Cumulative probability plots for all samples
in the stratigraphic section. The outlier age 446 Ma has been removed from the cumulative probability plot.

samples and from the sample near the base of
the section (P 5 0). The variable shapes of
the cumulative percentile curves and the low
P values suggest that the variability within the
formation is nonsystematic (Fig. 9B and Table
1).

DISCUSSION

Sedimentologic Implications

Our data from Methow/Methow-Tyaughton
strata provide general constraints on the prov-
enance of the basin and demonstrate the in-

herent heterogeneity of detrital zircon popu-
lations within even lithologically uniform
stratigraphic successions. The heterogeneity
evident in the fluvial Winthrop Formation sug-
gests that detrital zircon analysis, although
useful for addressing large-scale provenance
questions, may be of limited utility in address-
ing detailed basin-evolution questions. On a
broad scale, both the Harts Pass Formation/
Jackass Mountain Group and the Winthrop
Formation display consistent ranges in detrital
zircon ages, strongly dominated by Jurassic
and Cretaceous ages with a few older ages.
Both are lithologically uniform successions of

feldspathic litharenite derived from essentially
the same dissected volcanic arc, but deposited
in different depositional settings.

Because basin order and source heteroge-
neity are major controls on the extent of com-
positional homogeneity within a sedimentary
succession (Ingersoll, 1990; Ingersoll et al.,
1993), sampling strategies utilized in detrital
zircon provenance investigations must be
guided by variations in sedimentary facies and
detrital-mineral assemblages that record broad
changes in source-region character and depo-
sitional setting (e.g., Ingersoll, 1983). We an-
ticipated that the Harts Pass Formation/Jack-
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TABLE 1. COMPARISON OF DETRITAL ZIRCON AGE SPECTRA USING THE K-S STATISTIC

Stratigraphic unit Sample KD26 KD24 KD22 KD7

Harts Pass KD24 0.002
KD22 0.035 0.254
KD7 0.000 0.013 0.001
KD3 0.000 0.000 0.000 0.398

Sample KD42

Jackass Mountain KD41 0.003

Sample KD45.3 KD45.2 KD45.1

Winthrop KD45.2 0.179
(Manning Park) KD45.1 0.000 0.000

KD43 0.000 0.000 0.000

Sample KD17 KD13 KD11 KD10

Winthrop KD13 0.080
(Sandy Butte) KD11 0.750 0.137

KD10 0.013 0.849 0.042
KD9 0.000 0.001 0.000 0.002

Notes: Numbers refer to the probability (P) that the two samples are derived from the same zircon population.
The higher the P value, the more likely it is that the two age distributions were drawn from the same population.

ass Mountain Group succession would display
a relatively homogeneous detrital zircon sig-
nature reflecting the well-mixed character of a
submarine-fan turbidite complex and that the
Winthrop Formation would display a more
heterogeneous detrital zircon signature char-
acteristic of a fluvial succession fed by a num-
ber of individual drainages. In fact, both suc-
cessions contain significant heterogeneity, but
the variability between samples is much more
systematic and therefore predictable in the
Harts Pass Formation than in the Winthrop
Formation. In the Harts Pass Formation, there
is a gradual decrease in the prominence of the
Early Cretaceous peak and a gradual shift to-
ward slightly older Jurassic peak ages verti-
cally up-section, suggesting a decrease
through time in the importance of the Early
Cretaceous source relative to older sources,
perhaps indicative of an unroofing sequence
(Fig. 6). This systematic variation in the Harts
Pass Formation strata reveals a fine-scale evo-
lution from younger to older age distributions
within the turbiditic succession that is not ob-
vious from lithology alone. Further, the over-
all uniformity of peak shapes and distribution
within the section suggests that a relatively
low sampling density may be sufficient to
characterize the detrital zircon age distribution
in turbidite successions.

The Winthrop Formation displays a more
heterogeneous detrital zircon age signature,
with significant differences within and be-
tween sections. The nonsystematic variations
and low P values in the Winthrop detrital zir-
con age signature, especially at the Manning
Park locality, suggest that these strata accu-
mulated in a depositional setting characterized
by abrupt changes in detrital input, perhaps

resulting from a combination of active tecto-
nism, heterogeneous source region, and lim-
ited mixing of sediment derived from different
areas within the source region. Streams and
rivers transporting detritus to the basin likely
were influenced by magmatic and tectonic
events in the source region that may have
changed local topography and altered drainage
patterns from source to basin. Thus, the detri-
tal zircon signature in the Winthrop Formation
is less predictable and requires a high sam-
pling density to adequately characterize the
provenance of the succession and to begin to
interpret fine-scale changes within the
succession.

These results suggest that high-resolution
detrital zircon analysis does permit fine-scale
interpretation within sedimentologically ho-
mogeneous successions, such as turbidite se-
quences within the Harts Pass Formation, but
that heterogeneity within fluvial systems like
the Winthrop Formation is too unpredictable
to permit accurate fine-scale characterization
of the evolution of source regions with a rea-
sonable number of samples. Furthermore, the
presence of significant heterogeneity in detri-
tal zircon age distributions from a single lith-
ologically uniform sedimentary succession
that was derived from one source region sug-
gests that caution should be used when con-
ducting a statistical comparison of detrital zir-
con distributions from different stratigraphic
successions (e.g., Berry et al., 2001). The fact
that two stratigraphic successions display sta-
tistically different detrital zircon populations
(i.e., K-S probability values , 0.05) does not
require separate and distinct source regions,
but may reflect tectonic and geomorphic evo-
lution of a single source region. Conversely,

given the level of heterogeneity observed in
samples known to be from the same source
area, statistically similar populations (i.e.,
high K-S probability values) would provide
extremely compelling evidence that two dis-
tributions were derived from a common
source.

Paleogeographic Implications

The Methow/Methow-Tyaughton basin is a
fault-bounded sedimentary basin without de-
finitive linkage to its source region. Contro-
versial paleomagnetic data suggest that the ba-
sin (and the associated Insular superterrane)
may have undergone large-scale northward
latitudinal translation (e.g., Beck et al., 1981;
Wynne et al., 1995; Irving et al., 1996; Enkin
et al., 2003), potentially originating as far
south as central Mexico (;258N). Conversely,
structural data, basin reconstructions, timing
constraints, and alternate interpretations of pa-
leomagnetic data indicate that the basin de-
veloped at or near its current latitude and per-
haps was trapped east of the Insular
superterrane during sinistral (i.e., southward)
translation in Cretaceous time (e.g., Butler et
al., 1989; Miller et al., 1993; Umhoefer and
Miller, 1996; Kodama and Ward, 2001). Anal-
ysis of the detrital zircon populations within
Methow/Methow-Tyaughton strata may link
the basin to its source area, providing con-
straints on the amount of basin translation
since strata deposition.

Establishing a Detrital Zircon Signature
A combination of several age groups pro-

duces a detrital zircon pattern that can be more
confidently linked to a specific source region
than any single age group (Gehrels, 2000).
Accordingly, we combined all grain popula-
tions from each sedimentary succession to
produce composite detrital zircon signatures
that characterize Methow/Methow-Tyaughton
basin strata during its deposition between ca.
100 and 87 Ma (Fig. 10). Although both the
basin and the source region may contain zir-
con ages not included in the age ranges de-
fined in the detrital zircon signature, any po-
tential source region for the Methow/
Methow-Tyaughton basin must contain the
ages that are represented in the basin’s detrital
zircon signature. Thus, the detrital zircon sig-
nature for the Methow/Methow-Tyaughton ba-
sin serves as a guide for comparing detrital
zircon ages present in the Methow/Methow-
Tyaughton strata to potential source regions.
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Constraints on Potential Source Regions
The most likely sources of detrital zircon

grains in the Methow/Methow-Tyaughton
strata are the plutonic igneous rocks within the
source region, given the morphology, internal
zoning characteristics, and abundance of the
detrital zircon grains. The grains are large
(generally 100–300 mm), show no visual ev-
idence of older cores, and often show well-
developed oscillatory zoning characteristic of
magmatic growth (Hanchar and Miller, 1993).
Moreover, the majority of detrital zircon is de-
rived from felsic to intermediate plutonic
rocks; smaller contributions come from crys-
talline metamorphic assemblages and recycled
clastic sedimentary successions (Gehrels,
2000). Therefore, we restricted our prove-
nance search to regions containing plutonic
rocks with ages that match the detrital zircon
pattern identified in the sedimentary succes-
sion and that likely were exposed during de-
position of the Harts Pass Formation/Jackass
Mountain Group and the Winthrop Formation
in middle to Late Cretaceous time. The prob-
ability of exposure was assessed by a variety
of means, such as the existence of Late Cre-
taceous unconformities (e.g., southern and
northern Canadian Cordillera, Idaho, west-
central Mexico), age and provenance relation-
ships with adjacent basinal strata (e.g., Sierra
Nevada and Baja California), and uplift ages
(e.g., northern Cordillera, Baja California).

Sedimentologic, structural, and geochemi-
cal considerations allow further limits to be
placed on the search for potential source ter-
ranes. Sedimentary petrology indicates that
the Jackass Mountain Group and Winthrop
Formation constitute a volcano-plutonic un-
roofing succession (Coates, 1974; Kleinspehn,
1985). Abundant west-directed paleocurrent
indicators demonstrate that the Harts Pass For-
mation/Jackass Mountain Group and Win-
throp Formation were derived from an eastern
highland (Cole, 1973; Coates, 1974; Tennyson
and Cole, 1978; Kleinspehn, 1985; Kiessling,
1998). Paleomagnetic data limit vertical axis
rotations to less than 908 within Pasayten
Group strata, consistent with an eastern source
for these strata (Enkin et al., 2003). Neodym-
ium isotope data from the Jackass Mountain
Group and shale and sandstone intervals with-
in units in the northern Methow terrane cor-
relative with the Harts Pass Formation/Jackass
Mountain Group indicate a source region
dominated by essentially juvenile crust with a
minor component of evolved materials, such
as a fringing continental volcanic arc succes-
sion (Mahoney, 1994). Combined with strati-
graphic information and the detrital zircon sig-
natures, these disparate data indicate that

Methow strata were deposited in a forearc po-
sition west of a dissected juvenile volcanic arc
assemblage characterized by a wide variety of
primarily Early Jurassic to Early Cretaceous
plutons and east of an emergent fold-and-
thrust system that incorporated ocean-floor de-
tritus. We concentrate this analysis on poten-
tial source regions along the length of the
western North American Cordilleran margin
(Fig. 10), although it is possible that the Meth-
ow/Methow-Tyaughton basin developed adja-
cent to an unknown crustal entity unassociated
with North America.

Potential Source Regions

Canadian Cordillera. The Canadian Cor-
dillera is a mosaic of allochthonous tectono-
stratigraphic terranes juxtaposed along region-
al fault systems and intruded by Jurassic to
Tertiary plutons (e.g., Coney et al., 1980).
These terranes can be broadly grouped into
two superterranes separated by a major zone
of middle Cretaceous to Tertiary contractional
deformation (Monger et al., 1982; Rubin et
al., 1990; Monger, 1991; Monger and Jour-
neay, 1994). The Intermontane superterrane
(Stikinia, Cache Creek, Yukon-Tanana, and
Quesnellia terranes; Fig. 1) accreted to the
western margin of North America by Middle
Jurassic time (Monger et al., 1982; Monger,
1991; Monger and Journeay, 1994); the Insu-
lar superterrane (Wrangellia and Alexander
terranes; Fig. 1) accreted to the western mar-
gin of North America by at least the middle
Cretaceous (Monger et al., 1982; Rubin et al.,
1990). Because stratigraphic, structural, and
paleomagnetic constraints preclude the Insular
superterrane as a potential source, only the In-
termontane superterrane is discussed here.

Northern Canadian Cordillera (northern
British Columbia, Yukon, Alaska). The Inter-
montane superterrane in the northern Canadi-
an Cordillera includes Triassic to Jurassic vol-
canic arc rocks of the Stikinia terrane and
upper Proterozoic to Paleozoic continental-
margin metasedimentary rocks of the Yukon-
Tanana terrane (Monger et al., 1982; Morten-
sen, 1992). These rocks are intruded by
extensive Late Triassic to Early Jurassic (214–
180 Ma) plutonic rocks with a minor com-
ponent of Middle to Late Jurassic (160–140
Ma) plutons; these intrusions were followed
by widespread plutonism in middle Creta-
ceous time (110–90 Ma; Armstrong, 1988).

Southern Canadian Cordillera (southern
British Columbia and northern Washington).
The southern Canadian Cordillera includes
Mississippian to Jurassic oceanic mélange of
the Cache Creek terrane, Triassic to Jurassic

volcanic arc assemblages of Quesnellia, late
Paleozoic oceanic rocks of the Slide Mountain
terrane, and pericratonic rocks of the Kooten-
ay terrane (Monger et al., 1982). These ter-
ranes are intruded by an extensive suite of
Late Triassic to early Tertiary plutonic rocks;
major pulses of magmatism occurred in Late
Triassic–Early Jurassic (210–187 Ma), Middle
to Late Jurassic (180–148 Ma), and middle to
Late Cretaceous (130–85 Ma) time (Arm-
strong et al., 1988; Greig et al., 1992; Woods-
worth et al., 1992; Ghosh et al., 1995).

Idaho batholith. The Idaho batholith is pri-
marily a Late Cretaceous (90–75 Ma) intru-
sive complex with older phases (up to 120
Ma) along its western and northwestern mar-
gins (Lewis et al., 1987). The batholith was
emplaced into an imbricated succession of
Precambrian to Paleozoic sedimentary rocks
of cratonal affinity (Armstrong et al., 1977;
Fleck, 1990). The Salmon River shear zone
forms the western margin of the Idaho bath-
olith and separates rocks of the continental
margin from accreted terranes of the Blue
Mountains province (Avé Lallemant, 1995).
The Blue Mountains province consists of four
major allochthonous terranes containing mag-
matic rocks of Permian to Triassic age. At
least four episodes of metamorphism at 130,
118, 109, and 101 Ma record accretion of
these terranes along the Salmon River shear
zone; minor associated plutonism was most
extensive at ca. 115 Ma (Snee et al., 1995).

Klamath Mountains. The Klamath Moun-
tains consist of a series of terranes represent-
ing a Permian–Triassic subduction complex
that developed west of a Permian–Triassic arc
system (e.g., Irwin, 1981; Saleeby et al.,
1992). These terranes were structurally imbri-
cated by a major east-dipping thrust system
and overprinted by arc-related magmatism
(Burchfiel et al., 1992; Saleeby et al., 1992).
Volcanism and plutonism in the Klamath
Mountains occurred in distinct periods during
the Early Jurassic (ca. 200 Ma), early Middle
Jurassic (177–167 Ma), Late Jurassic (ca. 155
Ma), and latest Jurassic to Early Cretaceous
(150–135 Ma; Hacker et al., 1995; Irwin and
Wooden, 1999, and references therein).

Sierra Nevada. The Sierra Nevada mag-
matic system is isotopically and structurally
linked to the North American craton (Kistler
and Peterman, 1973; Saleeby et al., 1987,
1989; Linn et al., 1992). The Sierran batho-
lithic belt consists of autochthonous plutons
that intruded the North American margin in
Jurassic and Cretaceous time (e.g., Evernden
and Kistler, 1970; Stern et al., 1981; Bateman,
1983; Saleeby et al., 1989). The batholith in-
trudes Paleozoic miogeoclinal strata on its
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eastern margin and a complex assemblage of
Paleozoic arc-related terranes and subduction
complexes on its northwestern margin. Plu-
tons in the northwestern part of the batholithic
belt range in age from ca. 170 to 130 Ma, and
those in the southern and eastern parts of the
system range in age from 125 to 75 Ma (Irwin
and Wooden, 2001, and references therein).

Mojave-Sonora region. The Mojave-Sonora
region lies at the junction of several Protero-
zoic crustal provinces that are overlain by a
relatively thin veneer of Cambrian to Triassic
miogeoclinal strata (e.g., Wooden and Miller,
1990). Widespread plutonism, metamorphism,
and thin- to thick-skinned thrust faulting dis-
rupted these cratonal rocks in early Middle Ju-
rassic time, and plutonic ages of ca. 175–160
Ma are common (Tosdal et al., 1989; Miller
et al., 1990; Howard et al., 1995). Middle Ju-
rassic magmatism culminated with emplace-
ment of the Independence dike swarm at ca.
148 Ma (Tosdal et al., 1989). Widespread
crustal extension, denudation of the arc suc-
cession, and deposition of coarse clastic strata
in isolated rift and wrench-fault basins began
in Late Jurassic time, and magmatic rocks of
Early and early Late Cretaceous are rare. In
latest Cretaceous to Eocene time, the Sonora-
Mojave region was the site of widespread tec-
tonism and metamorphism; magmatism began
at ca. 92 Ma (Barth et al., 2001).

Peninsular Ranges. The Peninsular Ranges
batholith is divided longitudinally into distinct
western and eastern zones on the basis of age,
petrology, style, and depth of emplacement,
prebatholithic wall rock, and geophysical pa-
rameters (Gastil, 1975; Gromet and Silver,
1987; Silver and Chappell, 1988; Todd et al.,
1988). Western zone intrusions are older (ca.
140 to 105 Ma), range from gabbro to mon-
zogranite in composition, and have relatively
primitive island-arc geochemical affinities
(Silver and Chappell, 1988). The eastern zone
of the Peninsular Ranges batholith is domi-
nated by large volumes of relatively homo-
geneous tonalite and low-K granodiorite rang-
ing from 105 to 80 Ma (Gromet and Silver,
1987; Silver and Chappell, 1988; Walawender
et al., 1990).

West-central Mexico. The Sierra Madre Oc-
cidental, one of the largest Tertiary volcanic
provinces in the world, overlies Precambrian
crystalline basement and miogeoclinal rocks
at its north end and accreted rocks of the Guer-
rero composite terrane in the south (de Cserna,
1989). The Upper Jurassic to Lower Cretaceous
(Tithonian to Albian) island-arc volcanic rocks
and associated mélange (metamorphosed sili-
ciclastic turbidites, mid-oceanic-ridge basalts,
limestone, shale) that make up the Guerrero

composite terrane are intruded by Middle Ju-
rassic plutons (ca. 162–157 Ma; Iriondo,
2001). During the Cretaceous, nuclear Mexico
was covered by a carbonate platform, and the
Guerrero composite terrane was characterized
by arc volcanism (de Cserna, 1989). U-Pb
geochronologic data for plutonic rocks are
sparse in west-central Mexico, and the vast
majority of Rb-Sr and K-Ar dates are on Late
Cretaceous to early Tertiary plutonic rocks as-
sociated with the Laramide orogenic event (Ir-
iondo, 2001).

Best-Match Comparison
Figure 10 provides a comparison of the

composite detrital zircon age signature of
Methow/Methow-Tyaughton strata with the
potential Cordilleran source regions just de-
scribed to assess the likelihood of any region
being the primary source of detritus into the
sedimentary basin during middle to Late Cre-
taceous time. Potential sources of error in this
comparison include the difficulty in determin-
ing what rocks were exposed in middle to Late
Cretaceous time and the uncertainty associated
with any individual age analysis within the
proposed source area. This comparison is pre-
sented as a means of finding the best match
for the Methow/Methow-Tyaughton detrital
zircon age pattern; this pattern-matching anal-
ysis is not intended to be a rigorous assess-
ment of the exact age distribution in any given
source region. Detailed analysis of the Meso-
zoic magmatic evolution of each region is be-
yond the scope of this investigation.

Cretaceous strata of the Methow/Methow-
Tyaughton basin are characterized by Meso-
zoic detrital zircon ages ranging from Late
Triassic to middle Cretaceous (ca. 220–100
Ma); the age distribution shows a major Mid-
dle to Late Jurassic peak (ca. 180–150 Ma)
and a smaller Cretaceous peak (ca. 120–110
Ma; Fig. 10). The southern Canadian Cordil-
lera provides the strongest probable match to
this age spectrum, as that area contains abun-
dant Early and Middle Jurassic and Early Cre-
taceous rocks and smaller volumes of every
other major detrital-grain population found in
rocks of the Methow/Methow-Tyaughton ba-
sin. In fact, the absence of abundant 150–180
Ma plutons in the Northern Canadian Cordil-
lera, Idaho batholith, Sierra Nevada, Penin-
sular Ranges, and west-central Mexico and the
absence of 120–110 Ma plutons in the Klam-
ath Mountains and the Mojave-Sonora region
leave the Southern Canadian Cordillera as the
only source region identified along the Cor-
dilleran margin that contains ages which make
up the two major age peaks in the detrital zir-
con signature of the Methow/Methow-

Tyaughton strata (Fig. 10). In addition, Late
Triassic and Early Jurassic ages, which are
common in the Canadian Cordillera, are par-
ticularly sparse in other regions.

The Methow detrital zircon results strongly
support a linkage between the Methow terrane
and source regions to the east in the southern
Canadian Cordillera. This linkage has been
suggested by earlier workers (e.g., Dickinson,
1976; O’Brien et al., 1992) and is supported by
the existence of Archean detrital zircons in both
the overlying Methow/Methow-Tyaughton
strata and in the associated Nanaimo basin
(Mahoney et al., 1999). These results are
problematic for large-scale displacement mod-
els that require ;2800 km northward trans-
lation of the Methow terrane between ca. 85
and 50 Ma, as there is no known source region
to the south that could have provided the nec-
essary detrital zircon grains to the Methow/
Methow-Tyaughton basin during middle to
Late Cretaceous time.

CONCLUSIONS

The results of the high-resolution sampling
utilized in this study of the Methow/Methow-
Tyaughton basin provide a useful basis for es-
tablishing detrital zircon sampling protocols
for provenance analysis of similar basins. Fol-
lowing the sampling scale hierarchy estab-
lished by Ingersoll et al. (1993) for petrofacies
models, the higher the basin order, the more
homogeneous and well-mixed the sediment
and therefore the lower the sampling density
required to characterize detrital zircon age dis-
tributions. Although the overall detrital zircon
age distributions for both the second-order
Harts Pass/Jackass Mountain Group and the
first- to second-order Winthrop Formation can
be broadly characterized with relatively few
samples, both successions display significant
heterogeneity.

Even within the same scale of system, de-
positional environment strongly influences the
nature and extent of heterogeneity in the de-
trital zircon age distributions. Although both
successions display heterogeneity, the vari-
ability in the deep-water turbidite deposits of
the Harts Pass Formation is systematic and pre-
dictable; in contrast, the fluvial and marginal-
marine deposits of the Winthrop Formation
have heterogeneous detrital zircon age distri-
butions that vary unpredictably from sample
to sample. These results suggest that high-
resolution detrital zircon analysis does permit
fine-scale interpretation within a turbiditic
sedimentary succession, such as the Harts
Pass Formation, but heterogeneity within flu-
vial systems like the Winthrop Formation is
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too large and unpredictable to permit accurate
fine-scale characterization of the evolution of
source regions with a reasonable number of
samples.

The combined detrital zircon age signatures
of the Methow/Methow-Tyaughton basin in-
clude every age population present in both the
Harts Pass Formation/Jackass Mountain
Group and the Winthrop Formation. Com-
pared with potential source regions throughout
the North American Cordillera, the basin’s de-
trital zircon signature matches best with
source regions in the southern Canadian Cor-
dillera. This provenance link provides evi-
dence against large-scale dextral translation of
the Methow terrane and overlying Jurassic–
Cretaceous strata away from a southern source
region and suggests that the Methow/Methow-
Tyaughton basin developed in close proximity
to the southern Canadian Cordillera.

APPENDIX. LABORATORY TECHNIQUES

Zircon separation procedures were as follows:
rock sample was crushed and powdered by using
jaw crusher and disk grinder; powdered sample was
run through Gemeni table to remove the light frac-
tion; remaining sample soaked in 10% acetic acid
until no reaction took place; sample was washed
and then soaked in 10% hydrogen peroxide until no
reaction took place; sample was washed, dried, and
sieved through 48 mesh; sieved sample was run
through vertical Franz to remove iron filings and
most mafic minerals; nonmagnetic fraction placed
in lithium metatungstate (LMT) with density of 2.96
g/cm3 to remove lighter fraction; remaining heavy
fraction run through slope Franz to remove remain-
ing mafic minerals. The settings for the slope Franz
were 108 at 0.5 A, 108 at 1.0 A, and 108 at 1.8 A,
following Sircombe and Stern (2002). We analyzed
several of the zircon grains recovered from the final
magnetic fractions of four samples to test for po-
tential separation bias introduced by the slightly
variable magnetic susceptibility of zircon. The ages
of these slightly magnetic zircons were consistent
with ages from the nonmagnetic fraction, indicating
that the magnetic separation procedure did not in-
troduce a bias in the detrital zircon population. The
nonmagnetic slope Franz split was placed in meth-
ylene iodide (MEI) with density of 3.3 g/cm3; part
of the heavy MEI split (mostly zircon grains) was
spread out on a microscope slide; a small area of
the slide was cleared of all zircon grains and those
zircon grains (representative of the entire sample)
were mounted in epoxy for analysis by SHRIMP-
RG (sensitive, high-resolution ion microprobe—
reverse geometry).

For U-Pb analyses using the SHRIMP-RG at the
Stanford-U.S. Geological Survey Micro-isotopic
Analytical Center (SUMAC), the intensity of the
O2

– primary beam was 6–10 nA, mass resolution
was 6500–7500 at 10% peak height, and sensitivity
was 5–15 counts per second per 1 nA per 1 ppm
Pb in SL13 concentration standard. The primary
beam spot size was 20–40 mm in diameter, and the
spot was placed as close as possible to the core of
each grain, avoiding cracks and inclusions and rec-
ognizing that many grains are fragments. The op-
erator worked systematically through the array of

grains mounted in epoxy, thereby avoiding potential
bias introduced by selecting grains for analysis.
Each analysis consisted of five scans through each
isotope mass, counting 2 s on Zr2O, 7 s on 204Pb, 7
s on background, 12 s on 206Pb, 16 s on 207Pb, 10 s
on 208Pb, 5 s on 238U, 3 s on 248(ThO), and 3 s on
254(UO).
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