275 research outputs found
Effectiveness of a community football programme on improving physiological markers of health in a hard-to-reach male population: the role of exercise intensity
© 2015 Taylor & Francis. The present study evaluated the effectiveness of participation in recreational football during a community health programme, on physiological markers of health within a hard to reach population. Nine men (Age: 33 ± 9 years, Mass: 75.4 ± 13.7 kg, Height: 1.74 ± 0.07 m and Body Fat: 19 ± 2%) were recruited to participate in the study in collaboration with an English Premier League Football Club. Participants completed the 12-week football-based programme which included two coached football sessions each week. Physiological tests for blood pressure, resting heart rate, cholesterol and an anthropometrical test for body composition were completed at three time points during the study (Weeks – 1, 6 and 12) in an attempt to evaluate the impact of the intervention on health. During each training session, measurements of intensity (%HRmax, identified from the yoyo intermittent level 1 test), duration and rating of perceived exertion were made. The 12-week programme (mean HRmax throughout programme = 75 ± 4% beats min−1; mean RPE throughout programme = 6 ± 1) elicited few changes in physiological markers of health with the only significant change been a decrease in resting heart rate from weeks 6 to 12 (87 ± 22 beats min−1 at week-6, to 72 ± 17 beats min−1; p < 0.05). These data would suggest that the current community football-related health project was not effective in improving physiological markers of health, but was able to maintain their level of health. A lack of improvement may be due to the low intensity of sessions and a lack of coach education for the promotion of sessions that aim to improve health
Interpreting physical performance in professional soccer match-play: Should we be more pragmatic in our approach?
Academic and practitioner interest in the physical performance of male professional soccer players in the competition setting determined via time-motion analyses has grown substantially over the last four decades leading to a substantial body of published research and aiding development of a more systematic evidence-based framework for physical conditioning. Findings have forcibly shaped contemporary opinions in the sport with researchers and practitioners frequently emphasising the important role that physical performance plays in match outcomes. Time-motion analyses have also influenced practice as player conditioning programmes can be tailored according to the different physical demands identified across individual playing positions. Yet despite a more systematic approach to physical conditioning, data indicate that even at the very highest standards of competition, the contemporary player is still susceptible to transient and end-game fatigue. Over the course of this article, the author suggests that a more pragmatic approach to interpreting the current body of time-motion analysis data and its application in the practical setting is nevertheless required. Examples of this are addressed using findings in the literature to examine: a) the association between competitive physical performance and ‘success’ in professional soccer, b) current approaches to interpreting differences in time-motion analysis data across playing positions and, c) whether data can realistically be used to demonstrate the occurrence of fatigue in match-play. Gaps in the current literature and directions for future research are also identified
Sodium bicarbonate ingestion and individual variability in time to peak pH
The aim of this study was to determine the individual variability in time to peak pH after the consumption of a 300mg.kg-1 dose of sodium bicarbonate (NaHCO3). Seventeen active males volunteered to participate in the study (mean ± SD: age 21.38 ± 1.5y; mass 75.8 ± 5.8kg; height 176.8 ± 7.6cm). Participants reported to the laboratory where a resting capillary blood sample was taken aseptically from the fingertip. After this, 300 mg.kg-1 of NaHCO3 in 400ml of water with 50ml of flavoured cordial was ingested. Participants then rested for 90 min during which repeated blood samples were procured at 10 minute intervals for 60 mins and then every 5 min until 90 min. Blood pH concentrations were measured using a blood gas analyser. Results suggested that time to peak pH (64.41±18.78 min) was highly variable with a range of 10-85 min and a coefficient of variation of 29.16%. A bi-modal distribution occurred, at 65 and 75 min. In conclusion, researchers and athletes, when using NaHCO3 as an ergogenic aid, should determine, in advance their time to peak pH to best utilise the added buffering capacity this substance allows
Match running performance and physical capacity profiles of U8 and U10 soccer players
Aim
This study aimed to characterize match running performance of very young soccer players and evaluate the relationship between these data and physical capacities and technical skills.
Methods
Distances covered at different speed thresholds were measured during 31 official matches using GPS technology in U10 (n = 12; age 10.1 ± 0.1 years) and U8 (n = 15; age 7.9 ± 0.1 years) national soccer players. Counter movement jump performance (CMJ), 20 m shuttle running (20 m-SR), linear sprint performance (10, 20, 30 m), shuttle (SHDT) and slalom dribble tests (SLDT) were performed to determine the players physical capacities and technical skills.
Results
Physical capacities and technical skills were higher in U10 versus U8 players [P 0.05, ES: 0.74). The U10 players covered more total (TD) and high-intensity running distance (HIRD) than their younger counterparts did (P 0.05, ES: 0.99). TD and HIRD covered across the three 15 min periods of match play did not decline (P > 0.05, ES: 0.02–0.55). Very large magnitude correlations were observed between the U8 and U10 players performances during the 20 m-SR versus TD (r = 0.79; P < 0.01) and HIRD (r = 0.82; P < 0.01) covered during match play.
Conclusions
Data demonstrate differences in match running performance and physical capacity between U8 and U10 players, and large magnitude relationships between match play measures and physical test performances. These findings could be useful to sports science staff working within the academies
The influence of body weight on the pulmonary oxygen uptake kinetics in pre-pubertal children during moderate- and heavy intensity treadmill exercise
To assess the influence of obesity on the oxygen uptake (V˙O2) kinetics of pre-pubertal children during moderate- and heavy intensity treadmill exercise. We hypothesised that obese (OB) children would demonstrate significantly slower V˙O2 kinetics than their normal weight (NW) counterparts during moderate- and heavy intensity exercise. 18 OB (9.8 ± 0.5 years; 24.1 ± 2.0 kg m2) and 19 NW (9.7 ± 0.5 years; 17.6 ± 1.0 kg m2) children completed a graded-exercise test to volitional exhaustion and two submaximal constant work rate treadmill tests at moderate (90 % gas exchange threshold) and heavy (∆40 %) exercise intensities. Bodyweight significantly influenced the V˙O2 kinetics during both moderate- and heavy exercise intensities (P < 0.05). During moderate intensity exercise, the phase II τ (OB: 30 ± 13 cf. NW: 22 ± 7 s), mean response time (MRT; OB: 35 ± 16 cf. NW: 25 ± 10 s), phase II gain (OB: 156 ± 21 cf. NW: 111 ± 18 mLO2 kg−1 km−1) and oxygen deficit (OB: 0.36 ± 0.11 cf. NW: 0.20 ± 0.06 L) were significantly higher in the OB children (all P < 0.05). During heavy intensity exercise, the τ (OB: 33 ± 9 cf. NW: 27 ± 6 s; P < 0.05) and phase II gain (OB: 212 ± 61 cf. NW: 163 ± 23 mLO2 kg−1 km−1; P < 0.05) were similarly higher in the OB children. A slow component was observed in all participants during heavy intensity exercise, but was not influenced by weight status. In conclusion, this study demonstrates that weight status significantly influences the dynamic V˙O2 response at the onset of treadmill exercise in children and highlights that the deleterious effects of being obese are already manifest pre-puberty
Anthropometric and Physical Profiles of English Academy Rugby Union Players.
The purpose of the present study was to evaluate the anthropometric and physical characteristics of English regional academy rugby union academy players by age category (under 16, under 18 and under 21s). Data were collected on 67 academy players at the beginning of the pre-season period and comprised anthropometric (height, body mass and sum of 8 skinfolds) and physical (5 m, 10 m, 20 m & 40 m sprint, acceleration, velocity & momentum; agility 505; vertical jump; yo-yo intermittent recovery test level 1; 30-15 Intermittent Fitness Test; absolute and relative 3 repetition maximum (3RM) front squat, split squat, bench press, prone row and chin; and isometric mid-thigh pull). One way analysis of variance demonstrated significant increases across the three age categories (p < 0.05) for height (e.g., 16s = 178.8 ± 7.1; 18s = 183.5 ± 7.2; 21s = 186.7 ± 6.61 cm), body mass (e.g., 16s = 79.4 ± 12.8; 18s = 88.3 ± 11.9; 21s = 98.3 ± 10.4kg), countermovement jump height and peak power, sprint momentum, velocity and acceleration; absolute, relative and isometric (e.g., 16s = 2157.9 ± 309.9; 18s = 2561.3 ± 339.4; 21s = 3104.5 ± 354.0 N) strength. Momentum, maximal speed and the ability to maintain acceleration were all discriminating factors between age categories, suggesting that these variables may be more important to monitor rather than sprint times. These findings highlight that anthropometric and physical characteristics develop across age categories and provide comparative data for English academy Rugby Union players
Movement demands of elite rugby league players during Australian National Rugby League and European Super League matches
This is the authors' PDF version as accepted for publication of an article published in International Journal of Sports Physiology and Performance© 2014. The definitive version is available at http://journals.humankinetics.com/ijsppThis study compared the movement demands of players competing in matches from the elite Australian and European rugby league competitions
Monitoring of post-match fatigue in professional soccer: Welcome to the real world
Participation in soccer match-play leads to acute and transient subjective, biochemical, metabolic and physical disturbances in players over subsequent hours and days. Inadequate time for rest and regeneration between matches can expose players to the risk of training and competing whilst not entirely recovered. In professional soccer, contemporary competitive schedules can require teams to compete in-excess of 60 matches over the course of the season while periods of fixture congestion occur prompting much attention from researchers and practitioners to the monitoring of fatigue and readiness to play. A comprehensive body of research has investigated post-match acute and residual fatigue responses. Yet the relevance of the research for professional soccer contexts is debatable notably in relation to the study populations and designs employed. Monitoring can indeed be invasive, expensive, time-inefficient and difficult to perform routinely and simultaneously in a large squad of regularly competing players. Uncertainty also exists regarding the meaningfulness and interpretation of changes in fatigue response values and their functional relevance, and practical applicability in the field. The real-world need and cost-benefit of monitoring must be carefully weighed up. In relation to professional soccer contexts, this opinion paper intends to: 1) debate the need for PMF monitoring, 2) critique the real-world relevance of the current research literature, 3) discuss the practical burden relating to measurement tools and protocols and the collection, interpretation and application of data in the field, and, 4) propose future research perspectives
Skeletal muscle and performance adaptations to high-intensity training in elite male soccer players: speed endurance runs versus small-sided game training.
PURPOSE: To examine the skeletal muscle and performance responses across two different exercise training modalities which are highly applied in soccer training. METHODS: Using an RCT design, 39 well-trained male soccer players were randomized into either a speed endurance training (SET; n = 21) or a small-sided game group (SSG; n = 18). Over 4 weeks, thrice weekly, SET performed 6-10 × 30-s all-out runs with 3-min recovery, while SSG completed 2 × 7-9-min small-sided games with 2-min recovery. Muscle biopsies were obtained from m. vastus lateralis pre and post intervention and were subsequently analysed for metabolic enzyme activity and muscle protein expression. Moreover, the Yo-Yo Intermittent Recovery level 2 test (Yo-Yo IR2) was performed. RESULTS: Muscle CS maximal activity increased (P < 0.05) by 18% in SET only, demonstrating larger (P < 0.05) improvement than SSG, while HAD activity increased (P < 0.05) by 24% in both groups. Na(+)-K(+) ATPase α1 subunit protein expression increased (P < 0.05) in SET and SSG (19 and 37%, respectively), while MCT4 protein expression rose (P < 0.05) by 30 and 61% in SET and SSG, respectively. SOD2 protein expression increased (P < 0.05) by 28 and 37% in SET and SSG, respectively, while GLUT-4 protein expression increased (P < 0.05) by 40% in SSG only. Finally, SET displayed 39% greater improvement (P < 0.05) in Yo-Yo IR2 performance than SSG. CONCLUSION: Speed endurance training improved muscle oxidative capacity and exercise performance more pronouncedly than small-sided game training, but comparable responses were in muscle ion transporters and antioxidative capacity in well-trained male soccer players
The reliability, validity and sensitivity of a novel soccer-specific reactive repeated-sprint test (RRST).
PURPOSE: The aim of this study was to determine the reliability, validity and sensitivity of a reactive repeated-sprint test (RRST). METHODS: Elite (n = 72) and sub-elite male (n = 87) and elite female soccer players (n = 12) completed the RRST at set times during a season. Total distance timed was 30 m and the RRST performance measure was the total time (s) across eight repetitions. Competitive match running performance was measured using GPS and high-intensity running quantified (≥ 19.8 km h(-1)). RESULTS: Test-retest coefficient of variation in elite U16 and sub-elite U19 players was 0.71 and 0.84 %, respectively. Elite U18 players' RRST performances were better (P < 0.01) than elite U16, sub-elite U16, U18, U19 and elite senior female players (58.25 ± 1.34 vs 59.97 ± 1.64, 61.42 ± 2.25, 61.66 ± 1.70, 61.02 ± 2.31 and 63.88 ± 1.46 s; ES 0.6-1.9). For elite U18 players, RRST performances for central defenders (59.84 ± 1.35 s) were lower (P < 0.05) than full backs (57.85 ± 0.77 s), but not attackers (58.17 ± 1.73 s) or central and wide midfielders (58.55 ± 1.08 and 58.58 ± 1.89 s; ES 0.7-1.4). Elite U16 players demonstrated lower (P < 0.01) RRST performances during the preparation period versus the start, middle and end of season periods (61.13 ± 1.53 vs 59.51 ± 1.39, 59.25 ± 1.42 and 59.20 ± 1.57 s; ES 1.0-1.1). Very large magnitude correlations (P < 0.01) were observed between RRST performance and high-intensity running in the most intense 5-min period of a match for both elite and sub-elite U18 players (r = -0.71 and -0.74), with the best time of the RRST also correlating with the arrowhead agility test for elite U16 and U18 players (r = 0.84 and 0.75). CONCLUSION: The data demonstrate that the RRST is a reliable and valid test that distinguishes between performance across standard, position and seasonal period
- …
