130 research outputs found

    INFIMA leverages multi-omics model organism data to identify effector genes of human GWAS variants.

    Get PDF
    Genome-wide association studies reveal many non-coding variants associated with complex traits. However, model organism studies largely remain as an untapped resource for unveiling the effector genes of non-coding variants. We develop INFIMA, Integrative Fine-Mapping, to pinpoint causal SNPs for diversity outbred (DO) mice eQTL by integrating founder mice multi-omics data including ATAC-seq, RNA-seq, footprinting, and in silico mutation analysis. We demonstrate INFIMA\u27s superior performance compared to alternatives with human and mouse chromatin conformation capture datasets. We apply INFIMA to identify novel effector genes for GWAS variants associated with diabetes. The results of the application are available at http://www.statlab.wisc.edu/shiny/INFIMA/

    Regulatory architecture of the RCA gene cluster captures an intragenic TAD boundary, CTCF-Mediated chromatin looping and a long-range intergenic enhancer

    Get PDF
    The Regulators of Complement Activation (RCA) gene cluster comprises several tandemly arranged genes with shared functions within the immune system. RCA members, such as complement receptor 2 (CR2), are well-established susceptibility genes in complex autoimmune diseases. Altered expression of RCA genes has been demonstrated at both the functional and genetic level, but the mechanisms underlying their regulation are not fully characterised. We aimed to investigate the structural organisation of the RCA gene cluster to identify key regulatory elements that influence the expression of CR2 and other genes in this immunomodulatory region. Using 4C, we captured extensive CTCF-mediated chromatin looping across the RCA gene cluster in B cells and showed these were organised into two topologically associated domains (TADs). Interestingly, an inter-TAD boundary was located within the CR1 gene at a well-characterised segmental duplication. Additionally, we mapped numerous gene-gene and gene-enhancer interactions across the region, revealing extensive co-regulation. Importantly, we identified an intergenic enhancer and functionally demonstrated this element upregulates two RCA members (CR2 and CD55) in B cells. We have uncovered novel, long-range mechanisms whereby autoimmune disease susceptibility may be influenced by genetic variants, thus highlighting the important contribution of chromatin topology to gene regulation and complex genetic disease.This work was supported by the National Institutes of Health [R01 AI24717 to JH], the Australian Government Research Training Program Scholarship at the University of Western Australia [to JC and JSC], the Spanish Government [BFU2016-74961-P to JG-S] and an institutional grant Unidad de Excelencia María de Maeztu [MDM-206-0687 to the Department of Gene Regulation and Morphogenesis, Centro Andaluz de Biología del Desarrol]

    A specialized learner for inferring structured cis-regulatory modules

    Get PDF
    BACKGROUND: The process of transcription is controlled by systems of transcription factors, which bind to specific patterns of binding sites in the transcriptional control regions of genes, called cis-regulatory modules (CRMs). We present an expressive and easily comprehensible CRM representation which is capable of capturing several aspects of a CRM's structure and distinguishing between DNA sequences which do or do not contain it. We also present a learning algorithm tailored for this domain, and a novel method to avoid overfitting by controlling the expressivity of the model. RESULTS: We are able to find statistically significant CRMs more often then a current state-of-the-art approach on the same data sets. We also show experimentally that each aspect of our expressive CRM model space makes a positive contribution to the learned models on yeast and fly data. CONCLUSION: Structural aspects are an important part of CRMs, both in terms of interpreting them biologically and learning them accurately. Source code for our algorithm is available at

    Parameter estimation for robust HMM analysis of ChIP-chip data

    Get PDF
    Tiling arrays are an important tool for the study of transcriptional activity, protein-DNA interactions and chromatin structure on a genome-wide scale at high resolution. Although hidden Markov models have been used successfully to analyse tiling array data, parameter estimation for these models is typically ad hoc. Especially in the context of ChIP-chip experiments, no standard procedures exist to obtain parameter estimates from the data. Common methods for the calculation of maximum likelihood estimates such as the Baum-Welch algorithm or Viterbi training are rarely applied in the context of tiling array analysis. Results: Here we develop a hidden Markov model for the analysis of chromatin structure ChIP-chip tiling array data, using t emission distributions to increase robustness towards outliers. Maximum likelihood estimates are used for all model parameters. Two different approaches to parameter estimation are investigated and combined into an efficient procedure. Conclusion: We illustrate an efficient parameter estimation procedure that can be used for HMM based methods in general and leads to a clear increase in performance when compared to the use of ad hoc estimates. The resulting hidden Markov model outperforms established methods like TileMap in the context of histone modification studies.13 page(s

    CSI-Tree: a regression tree approach for modeling binding properties of DNA-binding molecules based on cognate site identification (CSI) data

    Get PDF
    The identification and characterization of binding sites of DNA-binding molecules, including transcription factors (TFs), is a critical problem at the interface of chemistry, biology and molecular medicine. The Cognate Site Identification (CSI) array is a high-throughput microarray platform for measuring comprehensive recognition profiles of DNA-binding molecules. This technique produces datasets that are useful not only for identifying binding sites of previously uncharacterized TFs but also for elucidating dependencies, both local and nonlocal, between the nucleotides at different positions of the recognition sites. We have developed a regression tree technique, CSI-Tree, for exploring the spectrum of binding sites of DNA-binding molecules. Our approach constructs regression trees utilizing the CSI data of unaligned sequences. The resulting model partitions the binding spectrum into homogeneous regions of position specific nucleotide effects. Each homogeneous partition is then summarized by a position weight matrix (PWM). Hence, the final outcome is a binding intensity rank-ordered collection of PWMs each of which spans a different region in the binding spectrum. Nodes of the regression tree depict the critical position/nucleotide combinations. We analyze the CSI data of the eukaryotic TF Nkx-2.5 and two engineered small molecule DNA ligands and obtain unique insights into their binding properties. The CSI tree for Nkx-2.5 reveals an interaction between two positions of the binding profile and elucidates how different nucleotide combinations at these two positions lead to different binding affinities. The CSI trees for the engineered DNA ligands exhibit a common preference for the dinucleotide AA in the first two positions, which is consistent with preference for a narrow and relatively flat minor groove. We carry out a reanalysis of these data with a mixture of PWMs approach. This approach is an advancement over the simple PWM model and accommodates position dependencies based on only sequence data. Our analysis indicates that the dependencies revealed by the CSI-Tree are challenging to discover without the actual binding intensities. Moreover, such a mixture model is highly sensitive to the number and length of the sequences analyzed. In contrast, CSI-Tree provides interpretable and concise summaries of the complete recognition profiles of DNA-binding molecules by utilizing binding affinities

    Discovering Transcription Factor Binding Sites in Highly Repetitive Regions of Genomes with Multi-Read Analysis of ChIP-Seq Data

    Get PDF
    Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) is rapidly replacing chromatin immunoprecipitation combined with genome-wide tiling array analysis (ChIP-chip) as the preferred approach for mapping transcription-factor binding sites and chromatin modifications. The state of the art for analyzing ChIP-seq data relies on using only reads that map uniquely to a relevant reference genome (uni-reads). This can lead to the omission of up to 30% of alignable reads. We describe a general approach for utilizing reads that map to multiple locations on the reference genome (multi-reads). Our approach is based on allocating multi-reads as fractional counts using a weighted alignment scheme. Using human STAT1 and mouse GATA1 ChIP-seq datasets, we illustrate that incorporation of multi-reads significantly increases sequencing depths, leads to detection of novel peaks that are not otherwise identifiable with uni-reads, and improves detection of peaks in mappable regions. We investigate various genome-wide characteristics of peaks detected only by utilization of multi-reads via computational experiments. Overall, peaks from multi-read analysis have similar characteristics to peaks that are identified by uni-reads except that the majority of them reside in segmental duplications. We further validate a number of GATA1 multi-read only peaks by independent quantitative real-time ChIP analysis and identify novel target genes of GATA1. These computational and experimental results establish that multi-reads can be of critical importance for studying transcription factor binding in highly repetitive regions of genomes with ChIP-seq experiments

    An Integrated Pipeline for the Genome-Wide Analysis of Transcription Factor Binding Sites from ChIP-Seq

    Get PDF
    ChIP-Seq has become the standard method for genome-wide profiling DNA association of transcription factors. To simplify analyzing and interpreting ChIP-Seq data, which typically involves using multiple applications, we describe an integrated, open source, R-based analysis pipeline. The pipeline addresses data input, peak detection, sequence and motif analysis, visualization, and data export, and can readily be extended via other R and Bioconductor packages. Using a standard multicore computer, it can be used with datasets consisting of tens of thousands of enriched regions. We demonstrate its effectiveness on published human ChIP-Seq datasets for FOXA1, ER, CTCF and STAT1, where it detected co-occurring motifs that were consistent with the literature but not detected by other methods. Our pipeline provides the first complete set of Bioconductor tools for sequence and motif analysis of ChIP-Seq and ChIP-chip data
    corecore