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Abstract

Genome-wide association studies reveal many non-coding variants associated with
complex traits. However, model organism studies largely remain as an untapped
resource for unveiling the effector genes of non-coding variants. We develop INFIMA,
Integrative Fine-Mapping, to pinpoint causal SNPs for diversity outbred (DO) mice eQTL
by integrating founder mice multi-omics data including ATAC-seq, RNA-seq,
footprinting, and in silico mutation analysis. We demonstrate INFIMA’s superior
performance compared to alternatives with human and mouse chromatin
conformation capture datasets. We apply INFIMA to identify novel effector genes for
GWAS variants associated with diabetes. The results of the application are available at
http://www.statlab.wisc.edu/shiny/INFIMA/.

Keywords: Fine-mapping, Molecular quantitative trait loci, Genome-wide association
studies, Pancreatic islets, Diversity outbred mouse, ATAC-seq, Generative probabilistic
modeling, Transfer learning

Background
Vast majority of disease and complex human trait-associated single nucleotide poly-
morphisms (SNPs) identified through genome-wide association studies (GWAS) are
non-coding [1]. This creates two key challenges for translation of genetic discoveries into
disease mechanisms. GWAS have capitalized on large-scale genomic and epigenomic
data to address the first challenge of interpreting non-coding risk SNPs and assigning
them potential regulatory roles [2, 3]. In many cases, non-coding loci with risk SNPs
span broad genomic regions that contain multiple genes [4]. This creates the second
challenge of identifying the effector genes through which risk SNPs exert their impact
on the phenotype, possibly via long-range chromatin interactions. With the advances in
three-dimensional (3D) chromatin structure and interaction profiling, recent studies have
successfully shown that a genetic variant is not necessarily causal for the nearest gene
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[5, 6]. The consequence of this new perspective is a vast expanse of the set of candidate
effector genes for a GWAS risk locus. In addition, the linkage disequilibrium (LD) [7] fur-
ther complicates the elucidation of effector genes for most GWAS risk SNPs because the
causal variant may not be the SNP with the strongest association, but one that is in high
LD. Collectively, these challenges hinder the delineation of effector genes for the majority
of GWAS risk SNPs.
The recent transcriptome-wide association studies (TWAS) that leverage reference

expression panels led to notable progress in identifying candidate disease-associated
genes [8, 9]. However, these approaches do not directly link the effector genes to SNPs.
In addition, and perhaps more restrictively, they rely on reference transcriptomes which
may not be readily available or are difficult to obtain for an array of disease-relevant tis-
sues. Complementary to these, model organism studies continue to provide opportunities
to unveil susceptibility genes and investigate findings from human GWAS. Specifically,
progress during the last decade confirmed that evolutionary conservation can be used to
discover regions of coding and non-coding DNA that are likely to have biological func-
tions [10–12] and thus may harbor functional SNPs. In this paper, we leverage model
organism multi-omics data, specifically, data from the diversity outbred (DO) mouse
population [13], to develop a framework for identifying candidate effector genes of
non-coding human GWAS SNPs.
The DOmouse population [13], a model organism resource derived from eight founder

strains (129, AJ, B6, CAST, NOD, NZO, PWK, WSB), has been widely used to identify QTL
for a variety of physiological and molecular phenotypes, including type 2 diabetes and
gene expression in pancreatic islets [14–18]. These studies led to novel insights into the
genetic architecture of islet gene regulation [14] and insulin secretion [19]. However, a
key impediment to maximizing the results of these types of eQTL studies is the lack of
genomic resolution required to pinpoint the causal variants and elucidate potential reg-
ulatory mechanisms. These in-bred genomes harbor long stretches of genetic variants
in high LD [20]. While this is advantageous for achieving gene-level mapping because,
compared to a human GWAS, comparatively fewer markers (i.e., tag SNPs) are needed
to genotype a larger group of SNPs, it results in groups of SNPs with similarly high LOD
scores. Consequently, it hinders identifying enhancer-sized regions (i.e., in the order of
hundreds of bases) underlying the detected associations. For example, an eQTL marker
with the highest LOD score was identified for the gene Abcc8 (Fig. 1a), where PWK has
the lowest allelic effect (Fig. 1b, DO-eQTL allelic effects estimated by R/qtl2 [21]). How-
ever, several SNPs within a 0.8-Mb sub-region are in high LD, i.e., at a level that greatly
exceeds the applicability of existing GWAS fine-mapping methods [22, 23], and thus have
similarly high LOD scores (Fig. 1c).
To facilitate fine-mapping of DO-islet eQTLs, we generated functional multi-omics

data by assay for transposase-accessible chromatin using sequencing (ATAC-seq) [24] and
transcriptome sequencing (RNA-seq) [25] from the islets of founder DO strains. Analysis
of these individual data sets established widespread variation in chromatin architecture
and gene expression in the DO founder strains. Next, we developed an integrative statisti-
cal model named INFIMA (Integrative Fine-Mapping with model organism multi-omics
data) that leverages multiple multi-omics data modalities to elucidate causal variants
underpinning the DO-islet eQTLs. INFIMA exploits differences of the candidate genetic
variants in terms of their multi-omics data support such as the chromatin accessibility
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Fig. 1 Diversity outbred (DO) mice expression QTL (eQTL) analysis results at the Abcc8 locus. a LOD score
profile for Abcc8 is maximized at marker location chr7:46,000,542 (dashed line) [14]. b Allele dependence for
Abcc8 local eQTL, where PWK harbors the low expression allele. c Zoomed in version of the LOD score profile
from a at the SNP level. SNPs tied for the same highest LOD score are marked with the red box. Fine-mapped
SNPs by INFIMA are highlighted by yellow stars

of the variant locations, correlations of chromatin accessibility, and transcriptome with
variant genotypes and DO mice allelic expression patterns. As a result, it maps genetic
variants within the DO founder strains to eQTL genes by quantifying how robustly the
multi-omics data explains the allelic patterns observed in the eQTL analysis. Application
of INFIMA to islet eQTLs identified in DOmice [14] revealed genetic variants that affect
chromatin accessibility, and led to strain-specific expression differences. Leveraging our
INFIMA-based fine-mapping of DO-islet eQTLs enabled us to nominate effector genes
for ∼ 3.5% of the ∼ 15,000 human GWAS SNPs associated with diabetes. We validated
INFIMA fine-mapping predictions with high throughput chromatin capture data from
both mouse and human islets. Our results demonstrate that INFIMA provides a founda-
tion for the critical task of capitalizing on model organism multi-omics data to elucidate
target susceptibility genes of GWAS risk loci.
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Results
ATAC-seq analysis reveals variable chromatin accessibility in islets of founder DO strains

We performed ATAC-seq to survey chromatin accessibility in pancreatic islets of both
sexes of the eight founder DO strains (Fig. 2a; Methods). After quality control with
transcription start site (TSS) enrichment analysis (Additional file 1: Figure S1) and data
processing, we obtained 77.7 ± 4.1 million reads (excluding mitochondrial DNA) per
sample which yielded a total of 51,014 accessible chromatin regions (Additional file 1:
Figure S2). Specifically, ATAC-seq reads from 16 samples were aligned to the reference

Fig. 2 Variable chromatin accessibility across founder DO strains. a Experimental overview and schematic of
primary output for chromatin accessibility profiling of founder DO strains by ATAC-seq and differential
accessibility analysis. b, c Genome browser displays of differentially accessible ATAC-seq peaks. b A
differentially accessible distal intergenic ATAC-seq peak (translucent gray) and a CAST-PWK specific ATAC-
seq peak at the Adcy5 intron (translucent blue). c A differentially accessible ATAC-seq peak at the Nomo1
promoter (translucent red) and an ATAC-seq peak less accessible in PWK at the Abcc8 intron (translucent
gray). d Heatmap of Pearson correlations between each pair of samples based on normalized chromatin
accessibility cluster strains consistent with their genetic relatedness. Hierarchical clustering reveals the two
clusters of strains outlined in black. e Differentially accessible regions (rows) in 16 samples (columns) of eight
founder DO strains across two sexes. ATAC-seq peak scores are standardized to the [0, 1] range. Rows are
clustered by k-means (k = 10). The six wild-derived clusters from top to bottom are: PWK, CAST-PWK-WSB,
CAST-WSB, and CAST, absent in CAST-PWK, WSB. Additional file 1: Figure S2 is the full version of this figure
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mouse genome (B6) assembly version mm10, yielding an average alignment rate of
92.3 ± 0.7% (Additional file 1: Table S1; Methods). To eliminate potential reference strain
bias, we also aligned to individualized genomes, and observed, on average, only 0.86%
difference (with a range of 0% and 3.66% across all alignments) between the two align-
ment strategies (Additional file 1: Table S2). Since these differences were not above the
level one would expect from slight variation in alignment parameters [26], we used align-
ments to the reference mouse genome.We identified regions of accessible chromatin with
MOSAiCS [27, 28] and applied irreproducible discovery rate (IDR) analysis [29] to gen-
erate ATAC-seq peak sets of each strain (at IDR of 0.05; Additional file 1: Supplementary
Notes). The resulting peak sets were then merged to generate a combined peak list. Over-
all, we observed high concordance of chromatin accessibility (Pearson’s r ∼ 0.95) between
the sexes for each strain (Additional file 1: Figure S3).
More than 70% of the accessible chromatin regions shared by all the strains corre-

sponded to promoters and/or enhancers according to H3K27ac and H3K4me3 ChIP-seq
based classification of tissue-specific promoters and enhancers from ENCODE (see
URLs; Additional file 1: Supplementary Notes). In contrast, only 26.2% of the peaks that
were specific to a single strain were annotated as promoters or enhancers (Additional
file 1: Figs. S8 and S9). These results suggest that most of the strain-specific ATAC-seq
peaks occur in strain-specific enhancers that are not captured in the existing list of mouse
enhancers from ENCODE.
Among the 51,014 islet ATAC-seq peaks identified, 76.0% showed strain-dependent dif-

ferences (FDR of 0.05; Methods) in an additive model of strain and sex effect. In contrast,
only 50 peaks, 39 of which are located on chromosome X, exhibited sex effects at the
same FDR level. The small number of peaks with sex effect is largely driven by the use of
strain-specific male and female data to define consistent peaks within a strain and enable
irreproducible error rate calculations for robust peak calling. Therefore, our analysis does
not reflect the overall chromatin accessibility differences between the sexes of strains.
Figs. 2b and c display a variety of peaks with strain differences. Specifically, an intronic
region of Adcy5 is more accessible in CAST and PWK compared to other strains, while a
distal intergenic region exhibits more accessibility in CAST, PWK, and WSB (Fig. 2b). An
intronic region of Abcc8 is less accessible in PWK compared to other strains, whereas the
Nomo1 promoter is more accessible in CAST (Fig. 2c). We observed that differentially
accessible chromatin regions were, overall, over-represented in promoters and under-
represented in distal intergenic regions; however, these differentially accessible regions
were more likely to be located in distal intergenic regions compared to peaks that did
not exhibit significant strain effect (34.5% versus 28.8%, Additional file 1: Figure S10,
quantified by regioneR [30] and ChIPseeker [31]). Clustering of the normalized ATAC-
seq signals of the master peaks across the 16 samples (both sexes, eight strains) revealed
a grouping structure largely consistent with the phylogenetic relationships among the
founder strains (Fig. 2d). CAST, PWK and WSB are wild-derived subspecies ofM. muscu-
lus [32], and represent ≥ 80% of the strain-specific peaks (Fig. 2e). These results suggest
that the disproportionate amount of genetic variation contributed by these wild-derived
strains mediate much of the differential chromatin accessibility we identified in islets.
Recent computational advances have enabled modeling of the magnitude and the shape

of genome-wide chromatin accessibility profiles to infer putative transcription factor
(TF) binding sites [33, 34]. We leveraged PIQ [33] to identify putative TF binding sites
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within the islet ATAC-seq peaks identified in the founder strains. Utilizing 744 known
TF motifs in mouse and human, we identified high-confidence binding profiles for 12
TFs, Mzf1, Gata1, Yy1, Sox10, Nfic1, Ets1, Spib, Znf354c, Gata3, Spi1, Nfatc2, and the
complex Arnt:Ahr (Fig. 3a). Nfatc2 is a well-established regulator of β-cell proliferation
in mouse and human islets [36] and Yy1 [37], Sox10 [38], Ets1 [39], and Sbip1 [40] are
TFs abundantly expressed in pancreatic islets. Recent work on a β-cell specific knockout
of Arnt supports a key role in glucose-stimulated insulin release and islet gene expres-
sion [41, 42]. While the standard footprint analysis considers both the sequence motifs
and ATAC-seq signals of binding sites, it cannot discriminate footprints of TFs with
similar binding sites. To improve the specificity of the footprint analysis, we integrated
the expression levels of TFs in islets from the founder DO strains, with abundant foot-
prints identified from ATAC-seq profiles (Additional file 1: Figure S11), and the sequence
similarity between TF motifs (Additional file 1: Figs. S12-S16). These additional crite-
ria revealed that the binding motif of the transcriptional repressor Znf354c, which is not
expressed in founder islets, is similar to that of Nkx2-2 (Additional file 1: Figure S17), a
well-characterized TF that is abundantly expressed and plays a key role in islet develop-
ment [43]. Thus, the Znf354c sites may be occupied by Nkx2-2. In addition, Gata1 and
Gata3 are not expressed in founder islets, whereas Gata2, a closely related TF to Gata1
and Gata3 [44], is highly expressed (Additional file 1: Figure S11), suggesting that it may
bind these sites. As expected, α-cell specific TFs such as Arx, Irx1, Irx2 showed a fewer
number of footprints (≤ 100) within the ATAC-seq peaks than β-cell specific TFs [45]
(e.g., Pdx1, Mnx1, NFATC2 with an average of ∼ 4900 footprints). Additional β-cell spe-
cific TFs (e.g., Mafk, Pax4, Nkx2-2, Foxa2, Pax6, Nkx6-1) were collectively enriched in
ATAC-seq peaks (p-value = 1.66e−2; Additional file 1: Supplementary Notes), albeit with
fewer footprints (∼ 1900).

Genetic variants associate with differential chromatin accessibility in islets of founder DO

strains

We next evaluated the contribution of genetic variability present in the eight founder
DO strains to differential chromatin accessibility within their islets. We associated the
signal of 22,200 ATAC-seq peaks with at least one SNP, with the genotypes of the
SNPs that they harbor. Although chromatin accessibility of a genomic region demar-
cated by an ATAC-seq peak can be modulated by SNPs in proximal and distal ATAC-seq
peaks or genomic regions, we considered only the local SNPs to alleviate the multiple
testing problem. As a result, we identified 47,062 local-ATAC-seq signal modulating vari-
ants (local-ATAC-MVs) within these 22,200 ATAC-seq peaks at FDR of 0.05 (Fig. 3b;
“Methods”). The distribution of the number of local-ATAC-MVs within ATAC-seq peaks
is right-skewed (Additional file 1: Figure S18) indicating that most peaks have one to three
local-ATAC-MVs. Overall, 16,549 (42.7%) of the 38,749 differential peaks do not harbor
any local-ATAC-MVs, suggesting that SNPs, or other factors, outside the ATAC-seq peaks
contribute to their variable accessibility among the strains. The vast majority (95.6%) of
the local-ATAC-MVs are associated with SNPs present in the three wild-derived strains
(Additional file 1: Figure S19). Furthermore, a large percentage of the local-ATAC-MVs
(77.3%) reside in distal intergenic or intronic regions, while 18.7% occur within promoters
(Additional file 1: Figure S20).
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Fig. 3 Genetic variants associate with differential chromatin accessibility in the islets of DO founder strains. a
Footprint analysis of ATAC-seq peaks. Transcription factors in black labels are expressed in founder islets
(Additional file 1: Figure S11). b Overview of local-ATAC-MV identification, footprint, and in silico mutation
analysis with atSNP. c A subset of SNPs (rows) that enhance/disrupt islet specific footprints (columns). The
circles depict changes in the footprint depth with the SNP and reference alleles (�FPD = FPDSNP − FPDREF ).
Enhancement and disruption based on comparative FPD are depicted by shades of red and blue,
respectively. The circle size indicates the significance of the impacts of the SNP alleles to the motif matches as
calculated by atSNP [35]. Larger circles correspond to more significant changes in the motif match. Examples
in d and e are highlighted by red boxes in c. d atSNP composite logo plot depicting Nkx2-2 binding site
enhancement by SNP rs223633842 (G → T). e atSNP composite logo plot depicting Pax6 binding site
disruption by SNP rs238913491 (A → C)

Genetic variants can affect gene regulation by changing TF binding affinities to genomic
sequences [46]. To assess whether local-ATAC-MVs influence TF binding, we first per-
formed an in silico mutation analysis of TF binding using atSNP [47]. In addition,
for each SNP-motif pair, we computed the relative change in footprint depth (FPD), a
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measure of TF activity within ATAC-seq peaks [48], at the motif location across strains
with the reference and alternative alleles (Additional file 1: Figure S21). Overall, we
identified 8029 loci where local-ATAC-MVs significantly influenced the footprint at TF
binding sites after multiplicity adjustment at FDR level of 0.05 (see Fig. 3b for the over-
all pipeline and Additional file 1: Figure S22 and S23 for evaluation of all the SNP-motif
combinations; “Methods”). Despite the stringent multiplicity adjustment, we identified
62 local-ATAC-MVs that impact binding sites of TFs that are highly expressed in α, β , or
other islet cell types [45] (Fig. 3c). For example, the SNP rs223633842 enhances a Nkx2-2
motif (Figs. 3d), whereas the SNP rs238913491 disrupts a Pax6 motif (Figs. 3e). Together,
these results suggest that strain-specific differences in chromatin accessibility are affected
by local-ATAC-MVs residing within ATAC-seq peaks and disrupting or enhancing TF
binding.

RNA-seq analysis in islets of founder DO strains reveals variable transcriptome

After establishing widespread association of SNP genotypes with differential chromatin
accessibility in the founder DO strains, we sequenced the islet transcriptome of the same
eight strains. This enabled us to link local-ATAC-MVs with strain-dependent differences
of nearby gene expression. We quantified the expression of 13,568 protein-coding genes
with RSEM [49] (Additional file 1: Figure S24; Methods) which appropriately clustered
the samples based on strain (Fig. 4a, Additional file 1: Figure S25). To maximize statistical
power, we associated only the founder local-ATAC-MVs, instead of all the founder SNPs,
with gene expression and identified 34,711 (73.8%) local-ATAC-MVs as associating with
cis (as defined by 1 Mb neighborhood of genes) gene expression variation (“Methods”).
The expression patterns of the genes associated with the local-ATAC-MVs are largely
driven by alleles of wild-derived strains CAST, PWK, andWSB. Specifically, alleles of these
three strains exert the most significant associations of the genes, i.e., the top 6 genotypes
driven by these strains compromise 50.3% of the top associations of the 6418 local-ATAC-
MV-associated genes (Fig. 4b). Next, we evaluated the distance between these genes and

Fig. 4 Variable transcriptome across islets of founder DO strains. a Two-dimensional projection of the 91
founder RNA-seq samples with tSNE. Samples from wild-derived strains are boxed in with the red rectangle.
b UpSet plot [50] for the frequencies of genotypes of local-ATAC-MVs associated with founder islet gene
expression. Each gene with at least one significant association contributed its most significant
local-ATAC-MV. Genotypes with frequencies less than 50 are not displayed
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the proximal associated local-ATAC-MV loci. We found widespread contribution of pro-
moters to expression variation across strains by harboring associated local-ATAC-MVs,
i.e., 58% of the genes with at least one local-ATAC-MV association had associated local-
ATAC-MV loci in their promoters (Additional file 1: Figure S26). We further investigated
how well the differential ATAC-seq peaks within promoters explained the variation in
gene expression across the strains. A pairwise differential expression analysis (Methods;
FDR of 0.05) for the eight founder strains identified eGenes that were selective for one
strain, i.e., B6 eGenes (expressed more in B6) and CAST eGenes (expressed more in
CAST). As expected, B6 eGenes have higher promoter accessibility in B6, whereas CAST
eGenes have higher promoter accessibility in CAST (Additional file 1: Figure S27). This
concordance between strain-selective promoter accessibility and gene expression was
observed, on average, for 67% of the eGenes (Additional file 1: Figure S28), suggesting
a strong contribution of genetic variance of chromatin architecture within promoters to
proximal gene regulation as also observed by others [51–54].

INFIMAmodel for fine-mapping DOmouse islet eQTLs by leveraging founder strain islet

ATAC-seq and RNA-seq

The strain-dependent differences in accessible chromatin and transcriptome landscapes
in islets of the DO founder strains allowed us to identify local-ATAC-MVs and their puta-
tive effector genes. Next, we leveraged this founder data to fine-map islet eQTLs fromDO
mice [14] (DO-eQTL, Fig. 1). We developed an integrative framework, named INFIMA,
that exploits the high-resolution of the founder ATAC-seq profiles and gene expres-
sion data to delineate enhancer-sized loci as the most likely causal locus for individual
DO-eQTLs.
INFIMA is an empirical Bayes model that estimates the linkages between founder local-

ATAC-MVs and DO-eQTL genes for improving the resolution of DO-eQTL analysis.
This is achieved by quantifying how well each non-coding SNP in high LD with the islet
DO-eQTL marker explains the observed relationship between the allelic effect of the
eQTL, islet ATAC-seq profile and gene expression among the founder strains proximal to
the marker locus, and derived TF footprint results (Fig. 5a). This quantification enables
inferring the likelihood of each candidate SNP, implied by the marker, to be causal. We
summarize the INFIMA framework in Fig. 5 and provide the statistical details in this
section.
A key step in the INFIMA framework is featurization of the DO-eQTL and founder

data. We let Sn and Sw denote the index set for the classical in-bred (129, AJ, B6,

NOD, NZO) and wild-derived strains (CAST, PWK, WSB), respectively, and let s be the
index for the strains. Let G denote the total number of instances of DO-eQTL data, i.e.,
total number of gene-marker associations, g = 1 . . .G the index for the DO-eQTL gene
of the gth instance, pg the number of candidate local-ATAC-MVs within a window sizeW
of the eQTLmarker for gene g, and k = 1 . . . pg the index for the local-ATAC-MVs within
this window (Fig. 5d). In our application, we have G = 10,936 contributed by 8046 eQTL
markers versus 10,393 genes. A given DO-eQTLmarker can have multiple DO genes that
it associates with (Additional file 1: Figure S29). Let Yg be an 8 × 1 vector of DO-eQTL
allelic expression effects estimated with R/qtl2 [21] at marker location with the highest
LOD score. We denote the features extracted from founder ATAC-seq and RNA-seq by



Dong et al. Genome Biology          (2021) 22:241 Page 10 of 32

Fig. 5 INFIMA model overview. a Input data for the INFIMA model. INFIMA leverages summaries of model
organism multi-omics data to model the relationship between allelic expression patterns (Yg) of DO-eQTL
genes (i) and founder expression patterns (Bg) under a null model of no causal SNPs (Vg = 0); (ii) and founder
genotype expression patterns Rg = Eg�Zg , where Eg represents genotype effects of candidate SNPs on
founder expression and Zg encodes the causal SNP for gene g, under an alternative model with causal SNPs
(Vg = 1), across all the genes indexed by g. b Plate representation of the INFIMAmodel summarizing data and
the parameters. Blank circles: latent variables and parameters to be inferred; filled circles: observed variables. c
INFIMA infers posterior probabilities of association for fine-mapping across all the candidate local-ATAC-MVs.
d–g An example input of the INFIMAmodel. d An overview of aW = 1Mbwindow around a DO-eQTLmarker
(centered dashed line) associated with Gene1. Two out of five candidate local-ATAC-MVs (red short lines) are
decorated with comparative footprint effects (orange triangles). e Example input data for the five candidate
local-ATAC-MVs. f An illustration of data trinarization and edit distance with multinomial distributions. The
trinarization details can be found in Methods. g The edit distance variables quantify how many strains have 0,
1, or 2 absolute distances between ˜Yg and ˜Rg/˜Bg and are modeled by multinomial distributions

Xg = (

Ag,Fg,Dg,Eg,Bg
)

, whereAg is a pg ×8 matrix of the normalized ATAC-seq signal
of the peak each candidate local-ATAC-MV resides in; Fg is the indicator vector (pg × 1)
of whether or not the candidate local-ATAC-MV is affecting a footprint significantly, i.e.,
it is among the set of 8029 SNP-motif combinations identified in the aforementioned
comparative footprint analysis;Dg is a pg ×1 vector of distance scores computed from the
distances of local-ATAC-MV to the promoter of gene g; Eg is a pg × 8 matrix of founder
RNA-seq genotype effects of these candidate SNPs for gene g (i.e., marginal regression of
gene expression with respect to genotype); Bg denotes an 8 × 1 vector of the normalized
founder expression of gene g. Figure 5e illustrates an example of the extracted features.
INFIMA model assumes at most one causal local-ATAC-MV per gene for a single

marker-gene association. This is encoded by an unobserved random variable Vg ∈ {0, 1}
representing the number of causal local-ATAC-MVs for eQTL gene g. While this assump-
tion can be relaxed at the expense of computational cost, it already enables multiple causal
loci per gene when the gene is associated with multiple markers. Next, we define an addi-
tional unobserved pg×1 random variableZg = (

Zg,1,Zg,2, . . . ,Zg,pg
)� ∈ {0, 1}pg to denote
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the causal local-ATAC-MV. It immediately follows that 1�Zg = Vg . Finally, in the pres-
ence of a local-ATAC-MV, i.e., Vg = 1, we define Rg = Eg

�Zg as an 8 × 1 vector of the
genotype effects of the causal SNP estimated from founder RNA-seq data for gene g.
For causal SNPs, we expect the allelic effects from DO mice (Yg from the eQTL study)

to be in agreement with the genotype effect of the causal SNP on the founder expression
(

Rg
)

. We quantify this relationship with a causal generative model of Yg conditional on
Rg. To avoid parametric assumptions needed for modeling continuous allelic effects Yg
and Rg, in addition to supporting potential differences in distributions for the classical
in-bred and wild-derived strains, we consider an edit distancemodel. Specifically, we con-
vert Yg, Rg, and Bg to trinary indicators encoding three levels of signal strengths: lower,
the same, and higher than the reference strain B6 (Fig. 5f; Methods). After trinarizing the
effects Yg,Rg → ˜Yg,˜Rg ∈ {−1, 0,+1}8, we compute absolute values of the differences
between their trinarized values dg,s = |˜Yg,s − ˜Rg,s| for each strain s. Then, we define the
edit distance random variables ng,i = ∑

s∈Sn I
{

dg,s = i
}

andmg,i = ∑

s∈Sw I
{

dg,s = i
}

for
i = 0, 1, 2. The set of edit distances

(

ng,0, ng,1, ng,2
)

represent numbers of 0’s, 1’s, and 2’s
in an experiment that corresponds to rolling a 3-sided dice 5 times. Hence, it follows that
ng = (

ng,0, ng,1, ng,2
)� ∼ Multinomial(5, a1) and, similarly, mg = (

mg,0,mg,1,mg,2
)� ∼

Multinomial(3,b1). Here, ng = (5, 0, 0) andmg = (3, 0, 0) indicate that the allelic expres-
sion pattern in the DO mice completely matches the genotype effect estimated from the
founders for gene g and the causal SNP specified by Zg. In this model, the lack of a can-
didate causal SNP is encoded by Vg = 0. However, some concordance between DO mice
allelic expression Yg and founder gene expression Bg is still warranted. Leveraging this
intuition, we develop a null generative model for Yg conditional on Bg with a similar tri-
narization approach as above. The trinarized data Yg,Bg → ˜Yg,˜Bg ∈ {−1, 0,+1}8, with
absolute differences d0g,s = |˜Yg,s − ˜Bg,s| can be defined similarly as in Vg = 1. We define
edit distance random variables n0g,i = ∑

s∈Sn I

{

d0g,s = i
}

and m0
g,i = ∑

s∈Sw I{d0g,s =
i}, i = 0, 1, 2 and assume individual multinomial distributions n0g =

(

n0g,0, n0g,1, n0g,2
)� ∼

Multinomial(5, a0), m0
g =

(

m0
g,0,m0

g,1,m0
g,2

)� ∼ Multinomial(3,b0), parametrized by
a0 and b0, respectively. Figure 5g illustrates an example of the trinarized data and the
corresponding edit distances.
Next, we combine the two settings, namely Vg = 1 and Vg = 0, as a mixture over

the two generative models. Specifically, we assume that the latent causal indicators are
random draws, i.e., Vg

i.i.d.∼ Bernoulli(γ ), with the prior probability, γ ∈ (0, 1), for the
causal generative model. Let�g = (

θg,1, θg,2, . . . , θg,pg
)� denote the probabilities that each

candidate SNP is causal for gene g; then, Zg is a mixture distribution over a multinomial
distribution and a point mass at vector of 0’s as

Zg|Vg ,�g ∼ VgMultinomial(1,�g) + (

1 − Vg
)

δ0, (1)

where δ0 is a size pg vector of 0’s. To leverage the multi-omic data further, we assume
a Dirichlet prior for the probability vector �g|	g ∼ Dirichlet(	g), where 	g =
(

	g,1,	g,2, . . . ,	g,pg
)� is defined as

	g,k := Fg,k + Dg,k + |cor (

Ag,k,Eg,k
) | + |cor (

Ag,k,Bg
) | + 1. (2)

Here, each component of 	g,k provides prior multi-omics information that contributes
to the likelihood of SNP k to be causal for gene g. Specifically, Fg,k ∈ {0, 1} indicates
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impact on a TF binding site; Dg,k ∈ (0, 0.5] is a function of the distance between the
DO-eQTL marker and the candidate SNP to utilize genomic distance; |cor (

Ag,k,Eg,k
) | ∈

[ 0, 1] measures the correlation between ATAC-seq signal of the peak harboring SNP k
and the genotype effect of SNP k on founder expression; |cor (

Ag,k,Bg
) | ∈[ 0, 1] similarly

quantifies the correlation between ATAC-seq signal and gene expression in the founder
strains.
The combined generative model for DO-eQTL effect size Yg is then given by

˜Yg|Zg,Eg,Bg, a0,b0, a1,b1 ∼ I
(

Zg �= 0
)

fa1,b1
(

ng,mg
) + I

(

Zg = 0
)

fa0,b0
(

n0g ,m0
g

)

,

(3)

where fax,by denotes the product of Multinomial probability distribution functions
parametrized by ax and by. In summary, INFIMAmodel takes as input DO-eQTL results,
summarized functional data from RNA-seq and ATAC-seq analysis of founder strains, as
well as ATAC-seq-based comparative footprint and in silico mutation analysis of SNPs
and outputs SNP-level quantifications (Fig. 5c).

Simulations reveal improved statistical power and fine-mapping with INFIMA

We first evaluated INFIMA for its ability to improve statistical power of fine-mapping
and identification of credible sets of SNPs in marker eQTL applications. We designed
Data-driven simulations where the parameters of the generative model are set based
on the actual DO-eQTL and summarized founder strain multi-omics data from ATAC-
seq, RNA-seq, and comparative footprint and in silico mutation analysis. We varied
the prior information extracted from the multi-omics data to be non-informative (NI),
moderately informative (MI), and highly informative (HI) by varying the information con-
tributed by the comparative footprint analysis (“Methods”). This allowed modulation of
the informativeness of the prior parameters without considering generative models for
summaries extracted from ATAC-seq and RNA-seq data. INFIMA model has two key
inference variables: Vg ∈ {0, 1} which encodes whether or not a gene has a causal SNP,
and Zg ∈ {0, 1}pg which encodes the causal SNP. Although the prior parameter γ for Vg
does not depend on the summarized multi-omics data (i.e., is expected to be insensitive
to the prior information), varying levels of informativeness in the multi-omics data yield
improved area under receiving operating characteristics and precision recall curves, with
an average of 0.61 ± 0.079% improvement in power from moderately to highly informa-
tive setting (Additional file 1: Figure S30). Since INFIMA leverages the multi-omics data
to specifically infer Zg by informing the prior probabilities of causal SNPs, we assessed
the impact of levels of informativeness of the priors on fine-mapping. Specifically, we
considered the most and least likely causal associations inferred by INFIMA for each
gene as “Most Likely”, local-ATAC-MV with the highest posterior probability of being
causal, and “Least Likely”, local-ATAC-MV with the lowest posterior probability of being
causal. We compared these INFIMA strategies with three intuitive and model-free base-
line strategies of selecting causal SNPs as “Random”, a randomly selected local-ATAC-MV;
“Closest to Marker”, local-ATAC-MV closest to the DO-eQTL marker in genomic dis-
tance; and “Closest to Gene”, local-ATAC-MV closest to the gene promoter in genomic
distance. This comparison revealed that INFIMA predictions provide markedly better
fine-mapping compared to baseline strategies regardless of the level of informativeness
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of the priors. Specifically, the “Most Likely” selection by INFIMA provided the small-
est credible proportion (the minimum proportion of ranked candidate local-ATAC-MVs
required to encompass the causal variant). The NI, MI, and HI settings yielded 33.90%,
22.22%, and 14.04% credible proportions, respectively (Fig. 6), compared to the mini-
mum of 52.48%, 48.32%, and 50.00% achievable with the baseline strategies. Interestingly,
even when the priors are non-informative (NI setting), the INFIMA-produced credible
set is, on average, 29.1% smaller than the smallest set that can be achieved by the base-
line strategies (33.90% by NI vs. 48.32% by MI). As expected, the least likely predictions
with INFIMA performed worse than baseline strategies, confirming INFIMA’s ability to
rank local-ATAC-MVs with respect to their causal potential. Overall, these simulations
highlighted the significance of integrating multi-omics data into fine-mapping.

INFIMA outperforms alternatives for fine-mapping DOmouse eQTLs

We fit INFIMA model with a 1-Mb window size (W ) around DO-eQTL markers across
all the G=10,936 gene-marker associations (8046 eQTL markers and 10,393 genes). This
resulted in a right-skewed distribution for the number of candidate local-ATAC-MVs
within a window (Fig. 7a, median = 36.0, sd = 26.9). Figure 7b summarizes the estimated
posterior probabilities of having a causal local-ATAC-MV, i.e., ̂Vg , across the genes. It
indicates that INFIMA infers a causal local-ATAC-MV for 3846 (38.0%) DO-eQTL genes
at FDR of 0.05.
We further summarized INFIMA results as we have done for the simulations by iden-

tifying the most likely and least likely causal local-ATAC-MVs for genes with an inferred
causal SNP, and compared these with the baseline strategies outlined in the simulations.
In addition to these baseline methods, we also considered two recent human GWAS fine-
mapping methods DAP-G [55, 56] and SuSiE [57], both of which have demonstrated best
performances in human GWAS fine-mapping studies. We initially considered applying
DAP-G and SuSiE to all the SNPs tagged by the eQTLmarker at the individual locus with-
out restricting the set of SNPs to local-ATAC-MVs and by utilizing the multi-omics prior

Fig. 6 Simulations reveal improved statistical power and fine-mapping with INFIMA. Comparison of the
fine-mapping performances of five strategies across three simulation settings: NI, non-informative; MI,
moderately informative; and HI, highly informative. The y-axis reports, as the performance metric, the
proportion of candidate local-ATAC-MVs required in the credible set to cover the causal SNPs
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Fig. 7 INFIMA outperforms alternatives for fine-mapping DO mouse eQTLs. a Histogram of numbers of
local-ATAC-MVs around DO-eQTL markers with window size ofW = 1 Mb. b Boxplot of INFIMA posterior
probabilities of association,̂Vg , across all genes. Red dashed line depicts the posterior probability cutoff for
FDR of 0.05. c Evaluation of fine-mapping strategies with empirical cumulative distribution of normalized
easy Hi-C scores. “Most Likely" and “Least Likely" refer to most and least likely predictions from INFIMA,
respectively. d Boxplots depict the proportion of the candidate causal local-ATAC-MVs that are included in
the credible set by INFIMA stratified by the size of candidate sets. The intervals on the x-axis are from quantile
bins (20%, 40%, 60%, 80%, 100% percentiles) of number of local-ATAC-MVs around the eQTL marker, pg .
Median values are displayed on each boxplot. e Proportion of times each of the individual multi-omic
components are the leading contributors to the INFIMA prior probability of causality: correlation between
ATAC-seq signal and founder eQTL effect sizes |cor(A, E)|, 0.207; correlation between ATAC-seq signal and
founder gene expression |cor(A, B)|, 0.330; footprint, 0.277; and distance, 0.186. f The rank scores of the
inferred causal local-ATAC-MVs when individual components are the top ranking contributors. The higher
the rank scores are, the more INFIMA weights in the component when inferring causal local-ATAC-MVs.

on the full set of SNPs. However, both methods failed to generate credible sets under
this setting (Additional file 1: Supplementary Notes) owing to the LD structure of the
DO mice (Additional file 1: Figure S31). Therefore, we reduced the candidate SNP set to
local-ATAC-MVs for fine-mapping with DAP-G and SuSiE.We leveraged high-resolution
easy Hi-C data, processed with a recent computational pipeline [58], from mouse islets
and computed the empirical cumulative distribution curve of Hi-C signal between the
DO-eQTL genes and their selected local-ATAC-MVs. We expect the local-ATAC-MVs
that are likely to be true positives to interact with the gene promoters and, as a result, to
exhibit higher Hi-C signal compared to competing approaches. Figure 7c depicts that the
“Most Likely” selection by INFIMA outperforms the baseline predictions while the “Least
Likely” selection by INFIMA performs worse than the baselines, highlighting an over-
all goodness-of-fit by INFIMA. The cumulative distribution curve of the “Most Likely”
selection is significantly distinct from the baseline strategies (quantified by three differ-
ent metrics: Kolmogorov-Smirov test, Kullback-Leibler (KL) divergence, and chi-squared
test, Additional file 1: Table S4-S6, Addition file 1: Figure S32), confirming that INFIMA
prediction of local-ATAC-MVs for DO-eQTL genes tend to be supported by higher Hi-C
interaction signals. While the performances of DAP-G and SuSiE improve markedly with
the INFIMA multi-omics data prior, they still perform worse than the baseline “Closest
to Gene” and are significantly inferior to INFIMA. This is likely attributable to the large
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numbers of local-ATAC-MVs that are in perfect LD in DO mice compared to typical
human GWAS fine-mapping studies (Additional file 1: Figure S33). Hi-C contacts stan-
dardized to [0, 1] for each DO-eQTL gene to enable comparison across genes indicate
that, concordant with the overall Hi-C score distribution comparison, the “Most Likely”
and the “Least Likely” selections by INFIMA harbor the highest and lowest ranked Hi-C
scores, respectively (Additional file 1: Figure S34).
After validating that INFIMA inferred causal local-ATAC-MVs are significantly better

than those identified by the baseline and alternative strategies, we evaluated the impact
on fine-mapping. INFIMA is able to reduce the size of the credible set of local-ATAC-
MVs tagged by a marker by 96.5% when pg > 60. When the set size, pg , is ≤ 18 (the lowest
20%), INFIMA reduces the size of the set of candidate local-ATAC-MVs by 75.0% (Fig. 7d).
These are significant reductions at both the high and low ends of the size of the tagged
local-ATAC-MV sets of a marker as it markedly reduces the number of loci for follow-up.
Since the multi-omics data INFIMA leverages to inform SNP prior probability of

causality is multi-component, we asked whether the individual components contributed
differently to the learned priors, i.e., 	g. Specifically, for each causal local-ATAC-MV of
gene g, we ranked each of the individual components across the same category of compo-
nents from all the competing pg local-ATAC-MVs in ascending order, calculated a rank
score1 by normalizing with pg , and reported the highest ranking contributor for the causal
local-ATAC-MV as the component with the highest rank score. We found that, for only
20.1% of the causal local-ATAC-MVs, the Distance is the highest ranking contributor to
the prior. The correlation between ATAC-seq signal and gene expression, i.e., |cor(A,B)|,
contributes the most at 33.0% (Fig. 7e). Figure 7f shows that when Distance is the leading
contributor, the median rank scores of the causal local-ATAC-MV, at 0.889, is lower than
other components. This further demonstrates that INFIMA is not biased towards the
local-ATAC-MVs closest to the genes. Interestingly, the Footprint component, with the
highest median rank score of 0.992 (Fig. 7f ), exerts a salient impact on INFIMA’s ability
to discriminate among the set of candidate causal local-ATAC-MVs.

INFIMA generates candidate susceptibility genes for human GWAS SNPs

The INFIMA model links ATAC-seq peaks and local-ATAC-MVs to candidate effec-
tor genes by fine-mapping DO-eQTLs. Next, we asked whether this approach can be
leveraged to assign putative target genes in islets for non-coding human GWAS SNPs
associated with diabetes.
Specifically, we considered 14,434 SNPs associated with 16 diabetes-related physiologi-

cal traits from human GWAS [59] (Additional file 1: Figure S35). We employed a two-step
peak-based strategy to lift-over human GWAS SNPs to syntenic sequences in the mouse
genome. We first lifted-over the GWAS SNPs directly using the UCSC lift-over tool (see
URLs) and identified the nearest mouse ATAC-seq peak to the syntenic loci. The remain-
ing GWAS SNPs (81.0%) that did not directly lift-over to the mouse genome were first
linked to their nearest human islet ATAC-seq peaks [60] and the peaks were lifted-over
to mouse and linked to the nearest mouse islet ATAC-seq peak within 10 Kb (Additional
file 1: Figure S36; “Methods”). This resulted in syntenic links between 4268 GWAS SNPs
(2749 direct and 1519 ATAC-seq peak-based) and 1532 mouse ATAC-seq peaks. Several

1rank() function in R was used with ties.method = “average”, and then normalized the resulting score by pg .
The rank score is ∈[ 0, 1] and larger magnitudes correspond to higher ranks.
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studies [61–63] have proposed that genomic compartment annotations associated with
promoters are largely conserved between human and mouse. Similarly, distal regulatory
elements across species are more likely to reside in regions with similar genomic com-
partment annotations [64, 65]. Therefore, we asked if these diabetes-associated syntenic
regions had common genomic compartment annotations with their human counterparts.
Overall, we observed a large degree of genomic annotation conservation for diabetes-
associated GWAS SNPs (Fig. 8a). Specifically, ∼ 70% of the local-ATAC-MVs syntenic to
intronic/distal/promoter GWAS SNPs exhibited the same genomic compartment anno-
tation in mouse. Furthermore, we found that mouse syntenic regions of GWAS SNPs
associated with diabetes-linked traits, e.g., type 1 diabetes, type 2 diabetes, body mass
index, and body weight were enriched for local-ATAC-MVs (Fig. 8b; Bonferroni of 0.05,
“Methods”). In contrast, mouse syntenic regions of a separate group of control SNPs asso-
ciated with non-diabetic traits (e.g., Alzheimer’s disease, and white blood cell counts)
were not enriched with local-ATAC-MVs. This enrichment analysis further confirmed
the relevance of the local-ATAC-MVs discovered in themouse for the diabetes-associated
human GWAS SNPs.
Next, we used INFIMA to predict effector genes of diabetes-associated GWAS SNPs.

Among the 1532 mouse ATAC-seq peaks syntenic to GWAS variants, 737 contained
local-ATAC-MVs. Of these, 548 were causally linked to at least one DO-eQTL gene, with
18.1% linked to a single gene (Additional file 1: Figure S37). This generated a set of human
gene orthologs as candidate effectors of GWAS SNPs.We next used human islet promoter
capture Hi-C data (pcHi-C) [66] and assessed whether pcHi-C interactions supported the
inferred GWAS SNP-effector gene pairs (Additional file 1: Figure S38). First, we observed
that the indirect peak-based lift-over strategy did not exhibit any discernible difference
from the direct lift-over in terms of pcHi-C validation (Fisher’s exact test p-value = 0.848).
Next, we compared INFIMA effector gene predictions for these human GWAS SNPs with
two baseline strategies: (1) linking mouse ATAC-seq peaks syntenic to GWAS variants to
their nearest genes instead of INFIMA predictions and (2) linking human GWAS SNPs to
their nearest genes without going throughmodel organism data and INFIMA predictions.
We observed that INFIMA predictions were markedly better supported by the pcHi-C
data (Fisher’s exact test p-values of 3.48e-96 and 1.20e-21 for comparisons of INFIMA
predictions to strategy (1) and (2), respectively; “Methods”).
Overall, we identified putative effector genes for 587 GWAS SNPs, 499 of which were

supported by the candidate effector gene promoter regions exhibiting significant Hi-C
signal [66] with either the corresponding GWAS SNPs or human ATAC-seq peaks at
enhancer regions (Fig. 8c; “Methods”). Among these effector genes are ABCC8, KCNJ11,
PDX1, ADCY5, and KCNQ1, which are recognized as pancreatic β-cell genes strongly
associated with type 2 diabetes [67, 68]. The ABCC8 promoter is linked to a distal inter-
genic GWAS SNP rs1557765 (body mass index) as well as three KCNJ11 intronic GWAS
SNPs rs5215, rs5219, and rs757110 (type 2 diabetes) by pcHi-C data. These three human
SNPs are syntenic to rs25937937, rs230081777, and rs227822836 in mouse and are identi-
fied by INFIMA as causal for a Abcc8DO-eQTL, the homolog to human ABCC8 (Figs. 8d
and f). In addition to nominating candidate effector genes, INFIMA analysis also facili-
tates comparison of potential impacts of human GWAS SNPs and their syntenic mouse
local-ATAC-MVs on transcription factor binding. For example, atSNP search [69] results
on human SNPs rs5215 and rs1557765 indicate that both rs1557765 and rs5215 lead to
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Fig. 8 INFIMA generates candidate susceptibility genes for human GWAS SNPs. a Comparison of genomic
location annotations between human GWAS SNPs and the orthologous mouse genetic variants. Left:
numbers of mapped GWAS SNPs within intronic, distal, promoter, exonic, UTR, and downstream genomic
locations. Right: Barplots of the local-ATAC-MVs mapping to the intronic, distal, and promoter groups of
GWAS SNPs, highlighting marked conservation of genomic location types. bMapped GWAS SNPs are
enriched for local-ATAC-MVs. The numbers in parentheses depict the numbers of GWAS SNPs for each trait
and the blue dashed line marks the threshold for the Bonferroni adjusted cutoff at 0.05. c Summary of
validation of INFIMA suggested susceptibility genes for human GWAS SNPs mapped to mouse with
promoter capture Hi-C (pcHi-C). d, f pcHi-C links ABCC8 promoter to 4 GWAS SNPs which map to 3 mouse
local-ATAC-MVs with INFIMA predicted effector gene Abcc8. e, g Promoter capture Hi-C links PDX1 promoter
to 10 distal GWAS SNPs which map to 3 mouse local-ATAC-MVs with INFIMA predicted effector gene of Pdx1.
d, e Human genome depictions of interactions of distal GWAS SNPs (translucent green) with the ABCC8 and
PDX1 promoters (translucent gray), together with the human ATAC-seq peaks. f, gMouse genome depiction
of ATAC-seq signal for local-ATAC-MVs (translucent red) where INFIMA fine-maps DO-eQTL marker (dashed
line) linked to genes Abcc8 and Pdx1 (promoters highlighted in translucent gray)

better sequence motifs for TCF7L2 (atSNP p-values of 5.99e−3 and 6.33e−4 for motif
enhancement) and, furthermore, rs5215 also results in a better sequence motif for YY1
(atSNP p-value of 1.68e−3, Additional file 1: Figure S39a). Similarly, their syntenic mouse
local-ATAC-MVs rs227822836 and rs230081777 enhance the binding sites for ortholo-
gous Tcf712 and Yy1 (atSNP p-values of 2.03e−2 and 8.53e−3 for motif enhancement;
Additional file 1: Figure S39b).
pcHi-C data supports a chromatin loop that links PDX1, deficiency of which asso-

ciates with β-cell dysfunction [70], to 10 GWAS SNPs rs1924074, rs9581853, rs9579083,
rs9319366, rs9581854, rs4771122, rs12584061, rs12585587, rs9581856, and rs9579084
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(also associates with body mass index) at promoter and intronic regions of MTIF3.
These GWAS SNPs are lifted-over to a mouse locus, with local-ATAC-MVs rs32366259,
rs241858428, and rs229501323, and for which INFIMA identifies Pdx1 as the potential
effector (Figs. 8e and g). We further observe that TFAP2A, GABPA, and HIC1 motifs
are disrupted while CREB1, NFYA, TP53, NKX3-2, and EGR1 motifs are enhanced by
the aforementioned human GWAS SNPs and their syntenic mouse local-ATAC-MVs,
suggesting orthologous TF bindings (Additional file 1: Figure S40-S47).
In addition to these examples where the human GWAS SNPs with inferred effec-

tor genes are likely to enhance or disrupt TF binding sites, our results include cases
where the SNPs exert their effects on expression through H3K27ac modification which
is one of the enhancer-defining histone modifications. An example of this is type 2
diabetes GWAS SNP rs11708067 for which INFIMA analysis identified ADCY5 as the
effector gene (Additional file 1: Figure S48). This SNP was shown to contribute to type
2 diabetes by disrupting an islet enhancer and, consequently, resulting in reduction of
ADCY5 expression [71]. In addition, ADCY5 was also inferred as the effector gene for
SNPs rs11708903, rs6438788, and rs4450740 associated with blood glucose and insulin-
secreting cells and residing in the intronic region of ADCY5. Finally, supporting data for
KCNQ1, a susceptibility gene for type 2 diabetes [72], is provided in Additional file 1:
Figure S49.

Discussion
While advances in genome sequencing improved the power of GWAS studies, elucidating
which genes GWAS SNPs might be impacting is still a critical barrier for fully unleash-
ing the power of GWAS. Recent large-scale and innovative efforts that leverage reference
transciptome datasets to impute gene expression in GWAS cohorts and leverage co-
localization with GWAS results have been successful in suggesting gene-level associations
[73–75]. However, these studies are limited by the availability of reference transcriptomes
in relevant tissues and accurate predictive models of gene expression. In a complemen-
tary approach, we leveraged model organism multi-omics data for this challenging task.
Specifically, we developed INFIMA as a statistically grounded framework to capitalize on
multi-omics functional data and fine-map model organism molecular quantitative trait
loci. Application of INFIMA to DO mouse islet eQTLs fine-mapped previously identi-
fied eQTLs. Next, we asked whether INFIMA islet eQTL fine-mapping results could be
transferred to human to infer effector genes of non-coding humanGWAS SNPs. This rea-
soning is instigated by the observation that non-coding human GWAS SNPs associated
with pancreatic islet functions are overwhelmingly enriched in syntenic accessible chro-
matin regions in islets of founder DO strains, suggesting potential functional relatedness
among the two sets of non-coding regions.We utilized INFIMA resolvedDOmouse SNP-
effector gene linkages to infer effector genes for about fifteen thousand human GWAS
SNPs. This application identified effector genes for 587 GWAS SNPs, linkages of 85%
were supported by promoter capture Hi-C data of human islets. Notably, a limitation
of pcHi-C data as the gold standard is the lack of specificity compared to, for example,
large-scale CRISPR screening experiments. However, it currently serves as a widely used
approach for identifying putative links [76–78]. The effector gene set included genes with
well-established connections to islet functions (e.g., ABCC8, KCNJ11, PDX1, ADCY5,
and KCNQ1) as well as novel candidates (e.g., NFATC2IP). While the ability to infer
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susceptibility genes for only 3.5% of the GWAS SNPs might appear low, this is due to
several potential limiting factors. First, by utilizing multi-omics data from islets, we are
aiming to identify effector genes of diabetes-associated GWAS variants in islets. This will
inherently exclude SNPs that might be exerting their effects in other tissues. Second, the
set of candidate regulatory regions (local-ATAC-MVs) that we have defined in founder
strain islets excludes other known potential regulatory mechanisms (e.g., alternative tran-
scriptional regulation and 3D interactions [79, 80]) that the non-coding SNPs might be
involved in. Third, only a subset of the trait-associated human GWAS SNPs are likely to
be eQTLs [81], and, furthermore, GWAS SNPs can mediate their effects through molec-
ular mechanisms beyond expression modulation. These, in combination with potential
organism-specific regulatory mechanisms, impact the extent of effector gene inference
from human GWAS SNPs and fine-mapped model organism eQTL data. Despite these
shortcomings, we showed with promoter capture Hi-C data validation that INFIMA, with
the current lift-over strategies that we employed, can be a powerful transfer learning
approach for exploring susceptibility genes of human GWAS loci. The lift-over strategies
to identify syntenic non-coding regions between human and mouse are likely to benefit
from recent analysis of cross-species enhancers [82].

Conclusions
Model organism studies provide extensive resources for human GWAS; however, effec-
tive model organism data integration methods as well as reliable cross organism transfer
learning frameworks are lagging behind. INFIMA provides a general framework for fine-
mapping model organism molecular quantitative loci by integrating multiple functional
data modalities. The availability of such fine-mapping results enables their transfer to
the human genome to identify putative effector genes of GWAS variants. The current
implementation of INFIMA excludes trans-eQTLs. As the ability to measure inter-
chromosomal interactions matures, incorporating trans-eQTLs into INFIMA framework
would be a natural extension. The INFIMA software is released at GitHub under the
MIT license [83], https://github.com/keleslab/INFIMA. The web application for INFIMA
results are available at http://www.statlab.wisc.edu/shiny/INFIMA/.

Methods
ATAC-seq sample preparation

The ATAC-seq samples were prepared using a selection of 50 average sized mouse islets.
The islets were washed with 500 μL of PBS at 4C and pelleted by centrifugation at 100×g
for 1 min. Three hundred microliters of ATAC Lysis buffer (10 mM Tris-HCl pH 7.4,
10 mM NaCl, 3 mM MgCl2, 0.1% IGEPAL CA-630) was used to resuspend the islets.
The islets were incubated for 20 minutes on ice. After incubating, the islets were lysed
by trituration with a 25-gauge needle until intact islets were no longer visible, usually
6 triturations. The lysate was centrifuged at 500×g for 10 min at 4C. This generated a
crude nuclei pellet and a supernatant. The supernatant was discarded and the nuclei pel-
let was washed with 100 μL of ATAC Lysis buffer in order to reduce cytoplasmic and
mitochondrial contamination. This mixture was centrifuged at 500×g for 10 min at 4C
and the supernatant was removed. Per ATAC-seq sample, a mixture of 25 μL 2x TDE
buffer, 22.5 μL nuclease-free water, and 2.5 μL TDE1 transposase enzyme (Nextera DNA
Library Prep kit, Illumina) was applied and incubated for 30min in a 37 °Cwater bath. The

https://github.com/keleslab/INFIMA
http://www.statlab.wisc.edu/shiny/INFIMA/
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samples were then purified using a MinElute Reaction cleanup kit (Qiagen) and eluted
using two sequential aliquots of 10 μL EB buffer. After purification all ATAC samples
were kept at −80 °C. All ATAC-seq samples were transposed and frozen prior to prepar-
ing all libraries. Libraries were amplified using 20 μL of ATAC sample, 2.5 μL Primer-1
(Ad1_noMX, 25 μM working stock), 2.5 μL Primer-2 (Ad2.X, 25 μM working stock), and
25 μL of NEBNext High Fidelity 2x PCR Master Mix. Each ATAC sample was amplified
by 12 cycles which was determined by qPCR to be saturating for the libraries. The PCR
thermocycler was set to 72 °C for 5 min, 98 °C for 30 s, and then 12 total cycles of 98 °C for
10 s, 63 °C for 30 s, 72 °C for 1 min. After amplification the libraries were purified using
MinElute PCR purification cleanup kit (Qiagen). The libraries were sequenced to a depth
of 134.8 ± 8.2 million reads using paired-end 125 bp reads on a HiSeq2500 (Illumina) at
the University of Wisconsin Biotechnology Center DNA Sequencing Facility.

ATAC-seq data analysis

Alignment of ATAC-seq reads

Illumina Nextera adapters were trimmed with cutadapt (version 2.0) [84] using the option
“-q 30 –minimum-length 36”. Paired-end ATAC-seq reads were aligned to the mouse
genome assembly (mm10) with bowtie2 (version 2.3.4.1) [85] with option “-X 800 –no-
mixed –no-discordant”. For each sample, unmapped reads were filtered out by SAMtools
view (version 1.8) [86] with option “-F 4” and mitochondrial reads were removed. Dupli-
cated reads were removed with Picard tools (version 2.9.2) [87]. This resulted in an
average of 77.7 ± 4.1 million reads per sample. TSS enrichment analysis was performed
with ataqv [88].

Generation of amaster peak list from the ATAC-seq samples

Peaks from individual and pooled samples across sexes of each strain were identified using
MOSAiCS [27, 28] at FDR of 0.05. Blacklisted regions (see URLs) and Chr Y regions were
filtered. We employed IDR analysis [29] to obtain reproducible sets of peaks between
male and female samples at IDR of 0.05 and leveraged “SignalValue” and “p-value” outputs
from IDR analysis as measures of peak-level signal to noise. The “SignalValue” output was
normalized across strains by multiplying 108/(# of reads) to adjust for differences in the
sample sequencing depths. IDR identified peaks from the pooled peak sets were trimmed
to exclude peaks with the lowest 10% “SignalValue” for each strain and then merged to
form the master peak list across all strains. “SignalValue” and “− log10(p-value)” columns
were aggregated as “MeanSignal” and “MeanP” in the master peak list.
Strain-specific ATAC-seq peaks tended to have lower ATAC-seq signals compared to

peaks present in multiple strains (Additional file 1: Figure S4). We mitigated the potential
for this bias by trimming the combined peak list to maximize the overlap of the trimmed
set with the ENCODE chromHMM annotations depicting non-quiescent regions of the
genome (See URLs; Additional file 1: Figs. S4, S5, and S6; Additional file 1: Supplemen-
tary Notes). We reasoned that ATAC-seq peaks across the strains should largely be within
non-quiescent chromatin states. We utilized 15-state chromHMM data for mm10 across
12 tissues from the ENCODE portal [89] and annotated the master peak list according to
the pooled set of the non-quiescent chromHMM regions across the 12 tissues. For each
level of “Total”, i.e., the number of strains a master peak is identified in, we varied two
tuning parameters: percentile of “MeanSignal” and percentile of “MeanP”, both of which
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varied in {0, 1, ..., 50}. Additional file 1: Figure S5 depicts the heatmaps for the percentage
of non-quiescent peaks and the percentage of remaining peaks as a function of these two
trimming parameters. In order to maximize these two quantities, we chose tuning param-
eters for each level of the “Total” and generated the trimmed master peak list. Finally,
the reference strain B6 did not have more strain-specific peaks compared to other strains
regardless of the trimming procedure, further demonstrating that alignments to the ref-
erence mouse genome did not amplify B6ATAC-seq peak signals (Additional file 1: Table
S3, Additional file 1: Figure S7).

Differential accessibility analysis

The ATAC-seq count matrix for the set of master peaks was computed by the R package
ChromVAR [90]. We used DESeq2 [91] to identify strain effects (the model “∼ strain” vs.
the null model) and sex effect (the model “∼ sex + strain” vs. “∼ strain”) by corresponding
likelihood ratio tests at FDR of 0.05.

Footprint analysis of ATAC-seq peaks

We utilized PIQ [33] to identify footprints of the 1316 curated JASPAR motifs [92] in
B6 ATAC-seq samples with purity score cutoff 0.75, i.e., TF occupancy probability. To
investigate whether ATAC peaks were enriched for footprints of TFs highly expressed
in islets, we first quantified the ATAC-seq signal genome-wide at base pair resolution
by counting the 5′ end Tn5 cut sites for each strain and normalized the cut sites by the
sequencing depths. Then, for each potential transcription factor binding site along the
genome, we computed the average Tn5 cuts at (1) the binding site, (2) 25 bp flanking
regions of the binding site, and (3) 26–50 bp flanking regions of the binding site. We
adapted the footprint depth (FPD) metric [48] as the proportional decrease in cut sites at
the binding site compared to flanking regions (Additional file 1: Figure S21). The footprint
profiles for the individual binding sites were computed from the base pair level ATAC-seq
signal in B6 ATAC-seq samples and aggregated for each individual motif. We evaluated
the significance of average FPD of each islet TF by comparing it to average FPDs of motifs
that are similar in width (width within ± 1 of the islet TF motif width) and information
content (information content within ± 0.2 of the islet TF motif information content).
A randomization test was performed to evaluate the collective enrichment of islet TFs
(Additional file 1: Supplementary Notes).

Identification of local-ATAC-MVs

In order to evaluate the impact of SNPs on ATAC-seq signal, we first extracted genetic
variants within differential ATAC-seq peaks for the eight founder strains from the dbSNP
(v142) database (see URLs, [93]) with the R package VariantAnnotation (version 1.34.0)
[94]. Retaining only the SNPs with “FILTER = PASS” and “QUAL = 999” resulted in
630,349 SNPs. In order to identify genetic variants genotypes of which are associated with
the ATAC-seq signal, we conducted a permutation test and retained for each differential
ATAC-seq peak only the SNP which associated the best with the local-ATAC-seq signal
while including all the SNPs with the same exact best association statistics. This resulted
in 22,200 ATAC-seq peaks harboring a total of 47,062 local-ATAC-MVs at FDR of 0.05,
with an average (median) of 2.1 (1.0) local-ATAC-MVs per peak.
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In silico mutation and footprint analysis

Variant-level comparative footprint analysis

We applied atSNP [35] to 47,062 local-ATAC-MVs with the 1316 curated JASPAR motifs
[92] and quantified the in silico effect of SNPs on TF binding by labeling SNP-motif
combinations with atSNP pval_rank < 0.05 as significant.
Next, to quantify the impact of SNPs on the realized ATAC-seq footprints, for each SNP

× motif interaction, FPD with/without SNP were computed by aggregating the results
for strains with/without the alternative allele. This ensured the disruption/enhancement
of motif by a SNP to be consistent with a decrease/increase in FPD. In order to eval-
uate whether the change in FPD (�FPD) due to the SNP is significant, we generated
motif-specific empirical null distributions of �FPD by treating insignificant results from
atSNP as the null set since this approximated the distribution of �FPD when the SNP is
not affecting the motif. Only the SNP-motif combinations with pval_fpd < 0.05 were
retained for the downstream analysis.
Accounting for both the in silico effect of SNP on TF binding and change in

ATAC-seq FPD, resulted in 1,211,807 candidate SNP-motif interactions with con-
sistent changes across the two metrics (640,038 Gain of function combinations:
pval_ref > 0.05, pval_snp ≤ 0.05, �FPD > 0; 571,769 Loss of function combi-
nations: pval_ref ≤ 0.05, pval_snp > 0.05, �FPD < 0). Finally, for each SNP, we
recorded the minimum pval_fpd as the p-value for the null hypothesis that the SNP
is not affecting any TF binding. Collectively, we identified 8029 significant SNP × motif
interactions comprising 1350 SNPs and 1196 motifs (FDR of 0.05).

RNA-seq sample preparation

Islet RNA profiling methods are described in detail in [14].

RNA-seq data analysis

Quantification of transcript abundance

We used RSEM [49] with GENCODE vm18 [95] gene annotation and obtained the gene
expression count matrix across protein-coding genes on Chromosomes 1-19, and X.
Genes with the lowest 10% variance across the samples were removed from the down-
stream analysis. Upper quartile normalization [96] and retaining the genes with non-zero
counts in at least 85% of the samples resulted in 13,568 protein-coding genes.

Association analysis of founder local-ATAC-MVs and gene expression

We applied MatrixEQTL [97] with default settings to all local-ATAC-MVs and obtained
96,309 associated local-ATAC-MV and gene pairs (34,711 distinct local-ATAC-MVs, only
cis regulatory local-ATAC-MVs were considered, 1 Mb window) at FDR of 1e−5.

INFIMA implementation details

INFIMAmodel fitting with an Expectation-Maximization algorithm

We estimated the INFIMA parameters with maximum likelihood using an expectation-
maximization (EM) algorithm. We provide below the detailed derivations. Let

g = (�g, a0,b0, a1,b1, γ ) denote the full set of model parameters and 1g,k be a pg × 1
vector with the kth entry equal to 1 and 0 elsewhere. The joint likelihood of the data (˜Yg)
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and the latent variables, conditional on features Xg extracted from founder RNA-seq and
ATAC-seq, for Zg = 1g,k is given by

P
(

˜Yg,Zg = 1g,k|Xg,
g
) ∝ P

(

˜Yg|Xg,Zg = 1g,k,
g
)

P
(

Zg = 1g,k|Xg,
g
)

, (4)

where the first term is given by

P
(

˜Yg|Xg,Zg = 1g,k,
g
) = P

(

˜Yg|Xg,Zg = 1g,k, a1,b1
)

(5)

=
∏

i=0,1,2
ang,i,k1,i bmg,i,k

1,i , (6)

and the second term is given by

P
(

Zg = 1g,k|Xg,
g
) = P

(

Zg = 1g,k|Xg,
g,Vg = 1
)

P
(

Vg = 1|Xg,
g
)

(7)

= θg,kγ . (8)

Similarly, the joint likelihood when Zg = 0 is then

P
(

˜Yg,Zg = 0|Xg,
g
) ∝ P

(

˜Yg|Xg,Zg = 0,
g
)

P
(

Zg = 0|Xg,
g
)

(9)

=
∏

i=0,1,2
a
n0g,i
0,i b

m0
g,i

0,i (1 − γ ). (10)

We next derive the full parameter joint posterior distribution given the latent variables
Zg,Vg as

P
(


g;˜Yg|Xg,Zg,Vg
) ∝ P

(

˜Yg|Xg,Zg,Vg ,
g
)

P
(


g|Xg,Zg,Vg
)

, (11)

where

P
(

˜Yg|Xg,Zg,Vg ,
g
) = P

(

a0,b0, a1,b1;˜Yg|Xg,Zg,Vg
)

︸ ︷︷ ︸

Lg,1

(12)

P
(


g|Xg,Zg,Vg
) = P

(

�g|Xg,Zg,Vg
)
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Lg,2

P
(

γ |Vg
)
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Lg,3

. (13)

With the combined generative model, we have

Lg,1 = [

fa1,b1
(

ng,mg
)]I(Zg �=0)

[

fa0,b0
(

n0g ,m0
g

)]I(Zg=0)
(14)

= [

fa1,b1
(

ng,mg
)]Vg

[

fa0,b0
(

n0g ,m0
g

)]1−Vg
, (15)

where f.,. denotes the product of Multinomial probability mass functions with appropriate
parameters. The log likelihood aggregated over g ∈ {1, 2, . . . ,G} is given by

log(L1) =
G

∑

g=1
log(Lg,1) (16)

=
G

∑

g=1

⎧

⎨

⎩

Vg

pg
∑

k=1
Zg,k

∑

i=0,1,2

(

ng,i,k log a1,i + mg,i,k log b1,i
) + (17)

(1 − Vg)
∑

i=0,1,2

(

n0g,i log a0,i + m0
g,i log b0,i

)

⎫

⎬

⎭

. (18)
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We define the weighted sums of the edit distance random variables ng,n0g ,mg,m0
g as

Ni =
G

∑

g=1
Vg

pg
∑

k=1
Zg,kng,i,k , N = N0 + N1 + N2, (19)

N0
i =

G
∑

g=1
(1 − Vg)n0g,i, N0 = N0

0 + N0
1 + N0

2 , (20)

Mi =
G

∑

g=1
Vg

pg
∑

k=1
Zg,kmg,i,k , M = M0 + M1 + M2, (21)

M0
i =

G
∑

g=1
(1 − Vg)m0

g,i, M0 = M0
0 + M0

1 + M0
2. (22)

Then, the Maximum Likelihood Estimators (MLEs) of the parameters are given by:

â1 = (N0,N1,N2)�

N
, â0 =

(

N0
0 ,N

0
1 ,N

0
2
)�

N0 , (23)

̂b1 = (M0,M1,M2)�

M
, ̂b0 =

(

M0
0,M

0
1,M

0
2
)�

M0 . (24)

We note that Lg,2 is the posterior distribution of �g. By the Dirichlet-Multinomial
conjugacy, we have

�g|Xg,Zg,Vg ∼ Dirichlet
(

	g + ZgVg
)

, (25)

and the maximum a posteriori (MAP) estimator can be computed as

̂�g,k = 	g,k + Zg,kVg − 1
∑pg

k=1
(

	g,k + Zg,kVg
) − pg

. (26)

Maximizing Lg,3 = P(γ |Vg) with respect to the prior probability γ that an association is
driven by causal SNP, we get γ̂ = 1

G
∑G

g=1 Vg .
In the DO-eQTL application, the INFIMA model was fit with the EM algorithm

described in Algorithm 1, where Vg and Zg,k values in the above equations were imputed
in the E-step. Multiple initial values of parameters were employed to avoid local optima.

Trinarization of allelic expression effect sizes into allelic patterns

For the DO-eQTL data Yg, we first standardized the 8 ×1 vector to [0,1] and subtracted
the allelic expression effect of the reference strain B6. We then trinarized the entries with
values > 0.2, < − 0.2 to 1, − 1 respectively, and set other entries to 0 to obtain ˜Yg. The
cutoffs were selected by balancing the number of entries with the 3 values. The same
trinarization scheme was applied to the normalized founder gene expression vectorBg →
˜Bg as well. For each row of the founder RNA-seq genotype effect matrix Eg, if the effect
size from the marginal regression of gene expression on the genotype was significant at
level 0.05, we replaced the effect size with 1 or − 1 depending on the sign of the effect size;
otherwise, the effect size was replaced by 0. Therefore, we obtained˜Eg and ˜Rg = ˜E�

g Zg.
Figure 5f illustrates a specific example in detail.
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Algorithm 1 INFIMAModel Fitting with Expectation-Maximization
1: procedure INFIMA(DO-eQTL, ATAC-seq, RNA-seq)
2: Initialize a1, a0, b1, b0, �, and γ .
3: repeat
4: � E-step:
5: for g ∈ {1, 2, . . . ,G} do
6: for k ∈ {1, 2, . . . , pg} do
7: Z(t)

g,k = ∏

i=0,1,2(a
(t)
1,i

ng,i,k b(t)
1,i

mg,i,k
)γ (t)θ (t)

g,k
8: end for
9: Zg

(t) = (Z(t)
g,1, . . . ,Z

(t)
g,pg )

�/(
∑pg

k=1 Z
(t)
g,k+

∏

i=0,1,2(a
(t)
0,i

n0g,i,k b(t)
0,i

m0
g,i,k )(1−γ (t)))

10: V (t)
g = 1�Zg

(t)

11: end for
12: �M-step:
13: Update a1(t+1), a0(t+1),b1(t+1),b0(t+1) according to Eqs. 23 and 24.
14: for g ∈ {1, 2, . . . ,G} do
15: for k ∈ {1, 2, . . . , pg} do
16: θ

(t+1)
g,k = Z(t)

g,kV
(t)
g + 	g,k − 1

17: end for
18: �g(t+1) = �g(t+1)/1��g(t+1) (Eq. 26).
19: end for
20: γ (t+1) = 1

G
∑G

g=1 1�Zg
(t)

21: t = t + 1
22: until t ≥ max_iteration or �change ≤ threshold.
23: end procedure

Distance prior

Awell-known bias of Hi-C data is that Hi-C signal decreases exponentially as the distance
between promoters and enhancers increases [98]. In order to avoid the bias towards the
local-ATAC-MVs closest to the gene promoter, we chose not to penalize the distance until
250 Kb.When distance is above 250 Kb, the score function has a decreasing trend in order
to slightly favor closer local-ATAC-MVs. We set the window size W equal to 1 Mb and
defined the distance score function as D(x) = 0.5 if x ≤ 0.25 Mb; D(x) = 5

12/
(

10x − 5
3
)

if x > 0.25 Mb, where x is the distance between local-ATAC-MV and DO gene pro-
moter. As a component of the prior 	g, the maximum value of distance score Dg is 0.5,
which serves as a “tie-breaker” rather than overwhelming the other three components
(Fig. 5a).

Pseudocounts for the edit distance random variables

To promote the consistency between the trinarized DO-eQTL data and founder data,
i.e., to tilt the edit distance random variables to favor lower values, we utilized pseu-
docount parameters λ0 = 0.1, λ1 = 0.01, and λ2 = 0 for the multinomial edit
distance random variables. Specifically, pseudocounts λipg were added to the weighted
sums of edit distance variables (Eqs. 19 to 22) in estimation of a0, b0, a1, and
b1 as:
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Ni =
G

∑

g=1
Vg

pg
∑

k=1
Zg,kng,i,k + λipg , (27)

N0
i =

G
∑

g=1
(1 − Vg)n0g,i + λipg , (28)

Mi =
G

∑

g=1
Vg

pg
∑

k=1
Zg,kmg,i,k + λipg , (29)

M0
i =

G
∑

g=1
(1 − Vg)m0

g,i + λipg . (30)

Under λ0 >> λ1 >> λ2, INFIMA formulation promotes the resulting causal SNPs to
have consistent relationships between the founder data and the DO-eQTL data; therefore,
the ordering of the SNPs is relatively insensitive to the actual values of these pseudocount
parameters.

Data-driven simulations

In order to simulate realistic data for our evaluations, we leveraged the parameters esti-
mated by the INFIMA on the DO-eQTL data fit with all the summarized data from
ATAC-seq, local-ATAC-MVs, and RNA-seq data. We used these parameter values as well
as the actual summarized ATAC-seq, local-ATAC-MVs, and RNA-seq to simulate Vg , Zg,
and Yg from the plate model in Fig. 5b. We varied the informativeness level of the sum-
marized data by varying the prior parameter 	g,k := Fg,k + Dg,k + |cor(Ag,k,Eg,k)| +
|cor(Ag,k,Bg)| + 1 according to the following three settings:

NI: The prior parameter 	g,k is set to be 1 for all candidate SNPs, corresponding to an
uninformative prior.

MI: The prior parameter 	g,k set to its observed value in the actual data and
accommodates multiple SNPs with Fg,k = 1. Multiple SNPs are affecting footprints
under this setting. Causal SNPs are distinguished by other components of the prior
parameter.

HI: Fg,k is set to 10 for a randomly selected SNP k and 0 for other SNPs. Under this
setting, the SNPs that affect footprints are more likely to be chosen as causal due to
the dominant contribution of the footprint component.

Statistical power for Vg was calculated at FDR of 0.05 by using a direct posterior
probability approach [99].

Linking human GWAS SNPs to mouse islet ATAC-seq peaks

The peak-based lift-over consisted of two steps: (1) direct and (2) indirect (Additional
file 1: Figure S36b). After removing blacklisted and chr Y human ATAC-seq peaks [60],
we obtained 156,861 human islet ATAC-seq peaks. For indirect mapping, we used “near-
est()” function in “GenomicAlignments” R package [100] to link GWAS SNPs to their
nearest human ATAC-seq peaks within 10 Kb distance. We used ‘liftOver()’ function in
“rtracklayer” R package [101] and the hg19 to mm10 reciprocal chain file (see URLs). For
each human genomic region, we merged gaps less than 10 bp among its mapped regions
in the mouse genome and selected the one with maximum width as the syntenic region.
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We then linked these syntenic regions to their nearest mouse ATAC-seq peaks within
10 Kb distance. The distance constraints aided to remove potential false positives to pre-
serve conservation of genomic compartments between the syntenic regions of the two
organisms. We observed a decline in level of conservation without imposing the distance
constraints (Additional file 1: Figure S50).

Enrichment analysis of human GWAS SNPs associated with islet function traits

We carried out an enrichment analysis for the associated SNPs of islet function-related
GWAS traits with more than 40 SNPs. Enrichment p-values were calculated based on
a resampling based null distribution that matched the phylogenic conservation score,
width, and chromosomal distribution of the syntenic regions of each GWAS trait. Specif-
ically, for each trait, we sampled the same number of random syntenic regions as the size
of the set lifted-over to mouse genome by matching the phylogenic conservation score,
width, and chromosomal distribution of the sampled regions to those of the actual syn-
tenic regions. The random syntenic regions were mapped to mouse ATAC peaks within
10 Kb distance, and the overlap with the local-ATAC-MVs were recorded. Repeating this
procedure one million times generated a null distribution for the actual observed num-
ber of local-ATAC-MVs that mapped to GWAS. The resulting enrichment p-values were
corrected for multiple testing with the Bonferroni procedure at the significance level of
0.05.

Validation of INFIMA predicted SNP-effector gene linkages with promoter capture Hi-C

For validation purposes, we filtered out 8 out of 1540 mouse ATAC-seq peaks because
the human ortholog of the genes that they were linked to resided in different chromo-
somes than the corresponding GWAS SNPs that they mapped to. Then, we processed
the INFIMA results that fine-mapped 737 local-ATAC-MV containing peaks that cor-
responded to syntenic regions of human GWAS SNPs. INFIMA resulted in mappings
for 587 GWAS SNPs (548 local-ATAC-MV containing peaks) by considering the local-
ATAC-MVs with aggregated posterior probability of being causal larger than 0.80 and
with a credible set less than 50% of the all the candidate SNPs. We leveraged 175,784 sig-
nificant promoter capture Hi-C contacts from [66] for validation of the inferred links.
With a median bin size ∼ 4 Kb, the median interaction distance of the pcHi-C data is
∼ 300 Kb. We required one end of pcHi-C interaction to be within 10 Kb upstream and
2 Kb downstream around TSS of human orthologous genes while the other end of pcHi-C
to reside within 10 Kb distance of GWAS SNPs and human ATAC-seq peaks. We identi-
fied 346 GWAS SNPs that were supported by pcHi-C through at least one effector gene.
Furthermore, at least one LD partner (R2 > 0.8, 1000 Genomes Phase 3 v5 European
population, SNiPA v3.3 [102]) of the 153 GWAS SNPs were in contact with the inferred
effector genes. Comparison of INFIMA predictions to the baseline strategies was carried
out with a Fisher’s exact test.
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