1,130 research outputs found

    Electronic structure and Jahn-Teller effect in GaN:Mn and ZnS:Cr

    Full text link
    We present an ab-initio and analytical study of the Jahn-Teller effect in two diluted magnetic semiconductors (DMS) with d4 impurities, namely Mn-doped GaN and Cr-doped ZnS. We show that only the combined treatment of Jahn-Teller distortion and strong electron correlation in the 3d shell may lead to the correct insulating electronic structure. Using the LSDA+U approach we obtain the Jahn-Teller energy gain in reasonable agreement with the available experimental data. The ab-initio results are completed by a more phenomenological ligand field theory.Comment: 15 pages, 5 figure

    Spontaneous emission of color centers at 4eV in hexagonal boron nitride under hydrostatic pressure

    Full text link
    The light emission properties of color centers emitting in 3.3-4 eV region are investigated for hydrostatic pressures ranging up to 5GPa at liquid helium temperature. The light emission energy decreases with pressure less sensitively than the bandgap. This behavior at variance from the shift of the bandgap is typical of deep traps. Interestingly, hydrostatic pressure reveals the existence of levels that vary differently under pressure (smaller increase of the emission wavelength compared to the rest of the levels in this energy region or even decrease of it) with pressure. This discovery enriches the physics of the color centers operating in the UV in hBN.Comment: 16 pages, 3 figure

    Faults Affecting Energy-Harvesting Circuits of Self-Powered Wireless Sensors and Their Possible Concurrent Detection

    Get PDF
    We analyze the effects of faults on an energy-harvesting circuit (EHC) providing power to a wireless biomedical multisensor node. We show that such faults may prevent the EHC from producing the power supply voltage level required by the multisensor node. Then, we propose a low-cost (in terms of power consumption and area overhead) additional circuit monitoring the voltage level produced by the EHC continuously, and concurrently with the normal operation of the device. Such a monitor gives an error indication if the generated voltage falls below the minimum value required by the sensor node to operate correctly, thus allowing the activation of proper recovery actions to guarantee system fault tolerance. The proposed monitor is self-checking with regard to the internal faults that can occur during its in-field operation, thus providing an error signal when affected by faults itself

    Kaon physics with the KLOE detector

    Get PDF
    In this paper we discuss the recent finalized analyses by the KLOE experiment at DAΦ\PhiNE: the CPT and Lorentz invariance test with entangled K0Kˉ0K^0 \bar{K}^0 pairs, and the precision measurement of the branching fraction of the decay K+π+ππ+(γ){ K^+} \rightarrow \pi^+\pi^-\pi^+(\gamma). We also present the status of an ongoing analysis aiming to precisely measure the K±K^{\pm} mass

    Fabrication and Characterization of Modulation-Doped ZnSe/(Zn,Cd)Se (110) Quantum Wells: A New System for Spin Coherence Studies

    Full text link
    We describe the growth of modulation-doped ZnSe/(Zn,Cd)Se quantum wells on (110) GaAs substrates. Unlike the well-known protocol for the epitaxy of ZnSe-based quantum structures on (001) GaAs, we find that the fabrication of quantum well structures on (110) GaAs requires significantly different growth conditions and sample architecture. We use magnetotransport measurements to confirm the formation of a two-dimensional electron gas in these samples, and then measure transverse electron spin relaxation times using time-resolved Faraday rotation. In contrast to expectations based upon known spin relaxation mechanisms, we find surprisingly little difference between the spin lifetimes in these (110)-oriented samples in comparison with (100)-oriented control samples.Comment: To appear in Journal of Superconductivity (Proceedings of 3rd Conference on Physics and Applications of Spin-dependent Phenomena in Semiconductors

    First-principles study of As interstitials in GaAs: Convergence, relaxation, and formation energy

    Full text link
    Convergence of density-functional supercell calculations for defect formation energies, charge transition levels, localized defect state properties, and defect atomic structure and relaxation is investigated using the arsenic split interstitial in GaAs as an example. Supercells containing up to 217 atoms and a variety of {\bf k}-space sampling schemes are considered. It is shown that a good description of the localized defect state dispersion and charge state transition levels requires at least a 217-atom supercell, although the defect structure and atomic relaxations can be well converged in a 65-atom cell. Formation energies are calculated for the As split interstitial, Ga vacancy, and As antisite defects in GaAs, taking into account the dependence upon chemical potential and Fermi energy. It is found that equilibrium concentrations of As interstitials will be much lower than equilibrium concentrations of As antisites in As-rich, nn-type or semi-insulating GaAs.Comment: 10 pages, 5 figure

    Precision measurement of the ηπ+ππ0\eta\to\pi^+\pi^-\pi^0 Dalitz plot distribution with the KLOE detector

    Full text link
    Using 1.61.6 fb1^{-1} of e+eϕηγe^+ e^-\to\phi\to\eta\gamma data collected with the KLOE detector at DAΦ\PhiNE, the Dalitz plot distribution for the ηπ+ππ0\eta \to \pi^+ \pi^- \pi^0 decay is studied with the world's largest sample of 4.7106\sim 4.7 \cdot 10^6 events. The Dalitz plot density is parametrized as a polynomial expansion up to cubic terms in the normalized dimensionless variables XX and YY. The experiment is sensitive to all charge conjugation conserving terms of the expansion, including a gX2YgX^2Y term. The statistical uncertainty of all parameters is improved by a factor two with respect to earlier measurements.Comment: 11 pages, 9 figures, supplement: an ascii tabl

    A precision study of the fine tuning in the DiracNMSSM

    Get PDF
    Recently the DiracNMSSM has been proposed as a possible solution to reduce the fine tuning in supersymmetry. We determine the degree of fine tuning needed in the DiracNMSSM with and without non-universal gaugino masses and compare it with the fine tuning in the GNMSSM. To apply reasonable cuts on the allowed parameter regions we perform a precise calculation of the Higgs mass. In addition, we include the limits from direct SUSY searches and dark matter abundance. We find that both models are comparable in terms of fine tuning, with the minimal fine tuning in the GNMSSM slightly smaller.Comment: 20 pages + appendices, 10 figure
    corecore