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1 Introduction

The discovery of the Higgs boson with a mass of about 125 GeV [1, 2] has a strong impact on

the parameter range of supersymmetric models. In particular in the Constrained Minimal

Supersymmetric Standard Model (CMSSM) large regions of the parameter space are not

consistent with this mass range and a large mass splitting in the stop sector is needed to

push the tree level mass mh ≤ MZ to that level. The fine tuning needed to achieve this

mass is large, requiring a cancellation between uncorrelated parameters of order 1 part in

300. In the more general context of the MSSM one still requires 1% fine tuning even for an

extremely low messenger scale of 10 TeV [3].1 In addition, it has recently been pointed out

that those regions in parameter space which could explain the Higgs mass by a rather light

SUSY spectrum together with maximal mixing in the stop sector have only a metastable

electroweak vacuum while in the global vacuum charge and color are broken [4–6].

To accommodate a heavier Higgs while avoiding very large fine tuning and the need

of radiative corrections of about 35 GeV requires new structure. The most widely studied

solution is an enhancement of the Higgs mass already at tree level by new F- or D-term

contributions [7–11]. In singlet extensions the mass of the SM-like Higgs is at tree-level

roughly given by m2
h ' M2

Z

(
cos2 2β + λ2

g2 sin2 2β
)

and becomes maximal for tanβ ∼ 2

and for a large coupling λ between the singlet and Higgs fields. The most common singlet

extension is the Next-to-Minimal-Supersymmetric-Standard-Model (NMSSM, see e.g. [8]

for a review) which assumes an underlying Z3 symmetry. As expected the fine tuning in

the NMSSM gets significantly reduced in comparison to the MSSM [12–16].

However, other singlet extensions fare even better in terms of fine tuning. Based

on an operator analysis it could be expected that singlet extensions leading to certain

operators are favoured [17, 18]. One option to generate the necessary operators is an

underlying R symmetry, ZR4 or ZR8 . After supersymmetry breaking, both the singlet mass

and the µ term are generated but both are constrained to be of order the supersymmetry

breaking mass [19, 20]. The resulting model is therefore a generalised version of the NMSSM

(GNMSSM) [21]. Indeed it was found that the fine tuning in the GNMSSM becomes even

better than in the NMSSM [21–23], see also [24, 25]. In addition, the symmetry underlying

the GNMSSM has the appealing feature that it forbids dangerous dimension 5 proton

decay operators and does not lead to the domain wall problem of the NMSSM [26]. Other

phenomenologically interesting aspects of the GNMSSM include a possible enhancement

of the diphoton decay rate of the Higgs boson [27] as well as a potential simultaneous

explanation of the Fermi line at 130 GeV [28]. Such signals however would require λ to

become non-perturbative well below the scale of a grand unified theory (GUT), making

an interpretation in terms of an underlying GUT model difficult, see however [29]. In this

article we will assume an underlying GUT structure and a fully perturbative extrapolation

to the GUT scale.

An idea to reduce the fine tuning even further has recently been proposed in ref. [30],

where it has been argued that a very natural extension of the MSSM is the DiracNMSSM

1Note that this definition of fine tuning differs from ours in the choice of the measure and the fact that

the parameters are taken to be low-scale parameters.
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with two additional singlets. The main motivation for the second singlet S̄ was a possible

mixed (’Dirac’) mass term, MsSS̄ which allows for very heavy singlets without a suppres-

sion of the tree-level F-term contribution to the Higgs mass while keeping the soft SUSY

breaking terms small. As the soft mass squared of the NMSSM singlet feeds into the soft

Higgs masses, this was argued to eliminate this source of fine tuning. The first study of

the fine tuning in the DiracNMSSM was based on a rough fine tuning measure including

only parameters at the electroweak scale which takes the impact of the RGEs only crudely

into account. In addition, the estimate of the Higgs mass was subject to large theoretical

uncertainties and the constraints from SUSY searches as well as dark matter abundance

were not included. In this work we perform a full numerical study of the fine tuning in

the DiracNMSSM using state of the art computer tools. To this end we implemented the

DiracNMSSM in SARAH to produce a corresponding version of SPheno— a state of the art

spectrum calculator. Our estimate of the fine tuning is based on a full two-loop running

of the renormalisation group equations and we perform a precise mass calculation in the

Higgs sector. The dark matter abundance and direct detection cross sections are calculated

with MicrOmegas.

We proceed as follows: in section 2 we introduce the DiracNMSSM and discuss the

Higgs sector in some detail. In section 3 we give details about the fine tuning calculation

and present our numerical results in section 4. We conclude in section 5. In the appendix we

present all renormalisation group equations, mass matrices and vertices which are changed

in comparison to the MSSM and explain in great detail the renormalisation of the CP even

Higgs sector in the DiracNMSSM.

2 The DiracNMSSM

2.1 The superpotential and soft-breaking terms

In the DiracNMSSM one adds two chiral singlet superfields S and S̄ to the MSSM with

superpotential

W =WMSSM + λSHuHd +MsSS̄ + ξsS + ξs̄S̄ . (2.1)

The general soft SUSY breaking terms associated with the Higgs and singlet sectors are

Vsoft = m2
s|s|2 +m2

s̄|s̄|2 +m2
hu |hu|

2 +m2
hd
|hd|2

+ (bµ huhd + λAλshuhd + bsss̄+ tss+ ts̄s̄+ h.c.) . (2.2)

Since the renormalisation group equations (RGEs) for the DiracNMSSM have not been

given in the literature before we list the β-functions for all superpotential and soft-breaking

parameters as well as all gauge couplings and vacuum expectation values (VEVs) up to

two loop in appendix A.
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2.2 Particle content after EWSB

After electroweak symmetry breaking (EWSB) the complex scalars in the Higgs sector

acquire VEVs and they are decomposed in their neutral components as

h0
d =

1√
2

(vd + φd + iσd) , h0
u =

1√
2

(vu + φu + iσu) , (2.3)

s =
1√
2

(vs + φs + iσs) , s̄ =
1√
2

(vs̄ + φs̄ + iσs̄) . (2.4)

As usual, the ratio of the two Higgs VEVs is given by vu
vd

= tanβ and v =
√
v2
d + v2

u '
246 GeV. The charged Higgs sector is very similar to the MSSM and contains one physical

charged Higgs with mass

MH+ =
1

4
v2(g2

2 − 2λ2) +
1 + tan2 β

tanβ
Beff . (2.5)

Here, we defined

Beff = bµ+
λ√
2

(Msvs̄ + vsAλ) . (2.6)

In the neutral Higgs sector there are four CP even states and three CP odd ones. These

fields come together with in total six neutralinos. The neutralino mass matrix is given in

the basis
(
λB̃, W̃

0, H̃0
d , H̃

0
u, S̃,

˜̄S
)

by

mχ̃0 =



M1 0 −1
2g1vd

1
2g1vu 0 0

0 M2
1
2g2vd −1

2g2vu 0 0

−1
2g1vd

1
2g2vd 0 −µeff − 1√

2
vuλ 0

1
2g1vu −1

2g2vu −µeff 0 − 1√
2
vdλ 0

0 0 − 1√
2
vuλ − 1√

2
vdλ 0 Ms

0 0 0 0 Ms 0


. (2.7)

Here, we introduced

µeff =
1√
2
vsλ+ µ . (2.8)

The matrix which diagonalizes the neutralinos is called N in the following

N∗mχ̃0N † = mdia
χ̃0 . (2.9)

Generically the lightest neutralino which is a good dark matter candidate can be an ad-

mixture of the bino, the Higgsinos (in the case of non-universal gaugino masses also the

Wino) and the Singlinos. However, we will see that usually large Ms is preferred so that

the Singlino component is typically very suppressed.

In the following we will mostly concentrate on the CP even Higgs states. For complete-

ness, all matrices and vertices which are different to the MSSM are listed in appendices B–C.

– 4 –



J
H
E
P
0
6
(
2
0
1
4
)
1
5
3

2.3 The Higgs sector

2.3.1 The Higgs mass at tree level

The four minimum conditions with respect to the CP even scalars introduced in eqs. (2.3)–

(2.4) read

Θd =
∂V

∂φd
= +

1

8

(
g2

1 + g2
2

)
vd

(
v2
d − v2

u

)
+ vd

(
m2
hd

+ |µ|2 +
√

2vs<(λµ∗) +
(
v2
s + v2

u

) |λ|2
2

)
− vu

(
<(λξ∗s ) + <

(
bµ
)

+

√
2

2

(
vs̄<(λM∗s ) + vs<(λAλ)

))
= 0 (2.10)

Θu =
∂V

∂φu
= +

1

8

(
g2

1 + g2
2

)
vu

(
v2
u − v2

d

)
+ vu

(
m2
hu + |µ|2 +

√
2vs<(λµ∗) +

(
v2
d + v2

s

) |λ|2
2

)
− vd

(
<(λξ∗s ) + <

(
bµ
)

+

√
2

2

(
vs̄<(λM∗s ) + vs<(λAλ)

))
= 0 (2.11)

Θs =
∂V

∂φs
=
(
v2
d + v2

u

)(
vs
|λ|2

2
+

√
2

2
<(µλ∗)

)
+m2

svs + vs̄<(bs) + |Ms|2vs +
√

2<(M∗s ξ̄s)

+
√

2<(ts)−
√

2

2
vdvu<(λAλ) = 0 (2.12)

Θs̄ =
∂V

∂φs̄
= |Ms|2vs̄ +

√
2<(M∗s ξs)−

√
2

2
vdvu<(M∗s λ) +

2√
2
<(ts̄) +m2

s̄vs̄ + vs<
(
bs

)
= 0

(2.13)

where <(a) refers to the real part of a. For given input parameters these equations can now

in principle be solved for the four vevs vd, vu, vs, vs̄. However, given that the electroweak

vev is known, v =
√
v2
u + v2

d ' 246 GeV, it makes sense to use this information and solve

for some of the input parameters instead. There are now many reasonable combinations of

parameters which can be fixed by these equations. The easiest choice might be to choose the

Higgs and singlet soft masses m2
hd

, m2
hu

, m2
s, and m2

s̄. However, this assumes automatically

that the Higgs soft-terms don’t unify with the other scalar soft SUSY masses. A set of

parameters which can be consistent with the unification of scalars is µ, bµ, ts, ts̄. In the

limit of real µ two distinct solutions are found

ts =
∓1

8
(
v2
d − v2

u

)(√2
(

4vs

(
v2
d − v2

u

)
(M2

s +m2
s) +

(
v2
d + v2

u

)√
Dλ
))

+
1

2

(
vdvuλAλ −

√
2vs̄bs

)
(2.14)

ts̄ =
1

2

(
Msvdvuλ−

√
2
(
m2
s̄vs̄ + vsbs

)
−
√

2M2
s vs̄

)
(2.15)

bµ =
1

4

(
2
(
m2
hd
−m2

hu

) 2vdvu
v2
u − v2

d

− vdvu
(
g2

1 + g2
2 − 2λ2

)
− 2
√

2
(
Msvs̄λ+ vsλAλ

))
(2.16)

µ = − 1√
2
λvs ±

√
D

2
√

2
(
v2
d − v2

u

) (2.17)

with
√
D =

√(
v2
u − v2

d

)((
g2

1 + g2
2

)(
v4
d − v4

u

)
+ 8m2

hd
v2
d − 8m2

hu
v2
u

)
. (2.18)
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The mass matrix of the CP even Higgs fields is given in the basis (φd, φu, φs, φs̄) by

m2
h =

(
MD MM

MT
M MS

)
(2.19)

with 2×2 matrices containing the elements involving only doublets (MD) or singlets (MS)

as well as the entries linking both sectors:

MD =

(
mφdφd mφuφd

mφuφd mφuφu

)
(2.20)

MS =

 1
2

(
v2
d + v2

u

)
|λ|2 +m2

s + |Ms|2 <
(
bs

)
<
(
bs

)
m2
s̄ + |Ms|2

 (2.21)

MM =

 1√
2

(
2<(vdλµ

∗)− vu<(λAλ)
)

+ vdvs|λ|2 − 1√
2
vu<

(
λM∗s

)
1√
2

(
2<(vuλµ

∗)− vd<(λAλ)
)

+ vuvs|λ|2 − 1√
2
vd<

(
λM∗s

) (2.22)

with

mφdφd = |µ|2 + <(
√

2vsλµ
∗) +

1

2

(
v2
s + v2

u

)
|λ|2 +

1

8

(
g2

1 + g2
2

)(
3v2
d − v2

u

)
+m2

hd
(2.23)

mφdφu = −<(λξ∗s+bµ)+vdvu

(
|λ|2− 1

4
(g2

1 +g2
2)
)
−
√

2

4

(
2vs̄<(λM∗s )+2vs<(λAλ)

)
(2.24)

mφuφu =
1

2

(
2|µ|2+2<(

√
2vsλµ

∗)+
(
v2
d+v2

s

)
|λ|2
)
− 1

8

(
g2

1 +g2
2

)(
v2
d − 3v2

u

)
+m2

hu . (2.25)

This matrix is diagonalized by ZH :

ZHm2
hZ

H,† = mdia
2,h . (2.26)

To gain some insight into the mass-dependence of the lightest, SM-like Higgs boson on

the different parameters, we can perform a rotation of the tree level Higgs matrix to the

basis (h,H, S, S̄) via the rotation matrix(
cosβ sinβ

− sinβ cosβ

)
. (2.27)

In first approximation, the h–H mixing as well as the h–S̄ mixing can be neglected and

the remaining matrix in the basis (h, S) reads

mhS =

(
Mhh MhS

MhS MSS

)
(2.28)

with

Mhh = M2
Z

(
cos2 2β +

λ2

g2
sin2 2β

)
(2.29)

MhS = − 1

2v
(λ
√
D sec 2β +

√
2v2λAλ) sin 2β (2.30)

MSS = M2
s +m2

s . (2.31)

– 6 –
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Mhh shows already the famous F-term enhancement of the Higgs mass at tree-level. Hence,

if we want to make use of this effect to reduce the fine tuning, we have to concentrate on

large λ and small tanβ. However, this effect can easily be spoiled by the mixing with the

singlet-sector coming from MhS which tends to reduce the smaller eigenvalue. Not relying

on special cancellations, the natural size of MhS is λvMSUSY, which implies that for small

mixing MSS should be rather large. The expectation that for the range of interest Ms is in

the few TeV range for the correct Higgs mass will be confirmed in our numerical analysis.

2.3.2 Radiative corrections to the Higgs mass

Of course, a tree-level calculation is not sufficient to have a reliable estimate for the Higgs

mass. The radiative corrections to the Higgs masses in the NMSSM are discussed in

detail in the literature [31–39]. In contrast, studies in the context of extensions of the

NMSSM often include just the dominant stop corrections at the 1-loop level but neglect all

other, potentially important, effects. However, we are not relying on these approximations

but calculate also the Higgs mass in the DiracNMSSM with a precision comparable to

the NMSSM: we include all corrections at the one-loop level and the dominant two-loop

corrections stemming from (s)tops. Details of the calculation are given in appendix D.

To give an impression of the size of the loop corrections and the dependence on the

different input parameters we compare in figure 1 the Higgs mass calculated (i) at tree

level, (ii) at one-loop, (iii) at two-loop including stop corrections. For these plots we have

solved the tadpole equations with respect to {µ, bµ, ts, ts̄} and have used in addition

m0 = 300 GeV , m1/2 = 800 GeV , tanβ = 2.3 , A0 = −2500 GeV ,

λ = 1.6 , Aλ = −100 GeV , vs = 8.3 GeV , vs̄ = 1.5 GeV ,

Ms = 9000 GeV , bs = 3 · 106 GeV2 , m2
s̄ = 7 · 1012 GeV2 .

There are some features visible in these plots: (i) as expected, the Higgs mass becomes

maximal for tanβ ∼ 2 and large values of λ. (ii) since m2
s was chosen to unify with the

other scalars, large Ms is needed to get a sufficiently large mh. The observation that mh

grows with increasing Ms might seem at first glance inconsistent with the approximate

tree-level expression for the Higgs mass derived in ref. [30]. This derivation however did

not include the mixing effects in the neutral scalar sector, which have a non-negligible

impact on the light eigenvalues and are fully included in our numeric computation. (iii)

the absolute shift coming from the 1- and 2-loop corrections are rather insensitive to λ, i.e.

the radiative corrections for the given point are completely dominated by the (s)top loops.

However, there are also parameter points where other loop corrections beside the

(s)top-loops can be very important. In figure 2 we show the one-loop corrected mass

with and without the corrections stemming from Higgs and neutralino/chargino loops.

The other parameters have been chosen as

m0 = 500 GeV , m1/2 = 600 GeV , tanβ = 2.3 , A0 = 2200 GeV ,

λ = 1.6 , Aλ = 1300 GeV , vs = 1.0 GeV , vs̄ = 0.1 GeV ,

Ms = 6600 GeV , bs = 1 · 104 GeV2 , m2
s̄ = 1 · 1014 GeV2 .
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Figure 1. Red line: tree-level mass; blue line: tree-level and full one-loop corrections; green line:

tree-level, full one-loop and dominant two loop corrections.
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Figure 2. One-loop contributions to the Higgs mass as function of the value of λ at the GUT

scale. The color code is as follows: black, dashed line: pure tree-level; blue-line: one-loop mass

without Higgs/Neutralino/Chargino corrections; green line: full one-loop corrections including

Higgs/Neutralino/Chargino contributions.

Obviously, in the case of large λ, the additional loops can easy push the Higgs mass

up by more than 5 GeV and the full calculation presented here is really necessary.

3 Fine tuning and precision calculations

3.1 Fine tuning measure

In refs. [40, 41] a quantitative estimate of the the fine tuning with respect to a set of

independent parameters, p, was introduced as

∆ ≡ max Abs
[
∆p

]
, ∆p ≡

∂ ln v2

∂ ln p
=

p

v2

∂v2

∂p
. (3.1)
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The quantity ∆−1 gives a measure of the accuracy to which independent parameters must

be tuned to get the correct electroweak breaking scale [42]. The fine tuning of a model

of course depends on what one takes to be the fundamental parameters and at which

scale these are defined. Given the success of gauge coupling unification in supersymmetric

models it is natural to assume an underlying GUT structure and to define the fundamental

parameters at the GUT scale. We therefore assume in the following study that all sfermion

soft terms unify at the GUT scale to m0. In addition, the mass scale of the gaugino

is set by the parameter m1/2. However, we do not necessarily impose the unification of

all gaugino masses (which can still be consistent with an underlying GUT) by allowing

for M1 = a · m1/2, M2 = b · m1/2, M3 = m1/2 and studying the cases a = b = 1 and

deviations from it separately. It has been observed that such a non-universality can reduce

the hierarchy problem through the appearance of a new “focus point” that makes the Higgs

mass less sensitive to the gaugino mass scale [43–54]. We assume that a and b are fixed by

the underlying theory such that contributions to the fine tuning are absent. As discussed

in [23, 47] values of a and b in the low-focus-point region occur naturally in a variety of

models. However, as discussed below, dropping this assumption does not greatly increase

the minimum fine tuning.

We calculate the fine tuning with respect to all independent parameters in the Dirac-

NMSSM, defined at the GUT scale,

p ∈ {m0,m1/2, A0, µ, bµ, λ,Aλ,Ms, bs, ts, ts̄,m
2
s,m

2
s̄,m

2
hd
,m2

hu} . (3.2)

In many fine tuning analyses it has become customary to consider the fine tuning in

terms of electroweak scale parameters only. Specifically for the DiracNMSSM the following

measure has been used in a previous study [30]

∆h ≡
2

m2
h

max

{
m2
hd
,m2

hu , β
(1)

m2
hd

L, β
(1)

m2
hu

L,Beff, δh

}
(3.3)

with the one-loop β-functions for the Higgs soft terms, L = log MGUT
MSUSY

' 30 and δh =
(λMs)2

(4π)2 log M2
s+m2

s
M2 . Here the factor L is supposed to account for the fine tuning from running,

i.e. mimicking the effect of defining the parameters at the high scale.

We have compared both measures. The result is shown for a set of 100,000 points in

figure 3. Even if they usually predict a FT of the same order, the differences can be sizable,

with a factor of more than an order of magnitude in both directions. One feature that does

not show up in the measure ∆h is the appearance of focus point correlations, hence the

fine tuning can be overestimated. We believe however that it is interesting to study such

correlations among parameters which reduce the fine tuning as this might give valuable

information about the desirable structure of the high energy theory. On the other hand for

large SUSY parameters which usually lead to very large ∆, the FT in ∆h appears to be

much smaller. The reason is that for large SUSY parameters β
(1)

m2
hu,d

L is no longer a good

approximation for the RGE dependence of the soft terms. Also the ‘source’ of fine tuning

is less clear in the low scale picture. For instance, the strong dependence on the gluino

mass which just enters indirectly in the running of m2
hu

is completely missed [55, 56].
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Figure 3. Comparison of the two fine tuning measures.

3.2 Fine tuning calculation

Fine tuning studies have a long tradition. However, the precision of these studies has not

necessarily improved as other theoretical predictions have. In particular for models which

go beyond the MSSM the prediction of the fine tuning often suffers from large theoretical

uncertainties which are often not mentioned:

• Higgs mass prediction: in many BMSSM studies only the dominant radiative correc-

tions from (s)tops known from the MSSM are included. In addition, also the impact

of external momenta is neglected. However, there are two main issues with this

approach: (i) potentially large, additional loop corrections which don’t exist in the

MSSM are completely missed. The best example is the NMSSM with large λ. This

has been demonstrated for the NMSSM in ref. [36] and we also show an example for

the DiracNMSSM in section 2.3.2. (ii) the effective potential approach corresponding

to p2 = 0 can differ significantly from a full one-loop correction demanding p2 = m2
h.

This has been shown for an NMSSM extension in ref. [57]. Both effects can be larger

than the experimental uncertainty.

• Dark matter prediction: in particular, in co-annihilation regions the relic density of

a particle has to be calculated numerically and MicrOmegas [58–60] is often used for

that. There exist nowadays several possibilities to create model files for MicrOmegas

for models which are not included in the public version [61–63]. Using one of these

codes should be strongly favored instead of modifying existing files by hand which is

very error prone. However, even if one uses the correct model files one must keep in

mind that the masses used as input for MicrOmegas suffer from an uncertainty. It

has been pointed out in ref. [37] that for instance the stau co-annihilation band in

the NMSSM gets a sizable shift when going from tree to the one-loop level.

– 10 –
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• RGE running: for phenomenological studies in the MSSM or NMSSM it has become

standard that the full 2-loop RGEs are solved numerically. Even if there exist now

several public tools which can calculate the RGEs for a given theory at the two-loop

level [64–66], often one-loop approximations are used for FT studies. In particular

for parameter regions which need cancellations between different contributions to the

RGE running for specific parameters like the Higgs mass terms, those approximations

can fail badly. Moreover, it is well known that the GUT scale defined by g1 = g2 is

shifted at the 2-loop level quite a bit. Already this effect causes a non-negligible dif-

ference between the running parameters at the SUSY scale and changes in particular

the masses of particles which depend on the strong interaction [67].

• SUSY thresholds: the running parameters entering the RGEs have to be derived from

the measured observables. To get an accurate set of gauge and Yukawa couplings at

the SUSY scale the SUSY thresholds have to be included [68]. In particular, gDR
3 can

differ by several percent from gMS
3 =

√
4παs(MZ) [69]. Depending on the size of these

threshold corrections the perturbativity limit of λ is shifted in singlet extensions of

the NMSSM [7].

In the current study we take care of all of these issues by using the public codes SARAH

and SPheno: we have implemented the DiracNMSSM in SARAH [63, 64, 70–72].2 SARAH has

then been used to create a SPheno [73, 74] module to get a full fledged spectrum generator

for the DiracNMSSM which provides the following features:

• All masses of SUSY and Higgs particles are calculated at the one-loop level including

all contributions present in the DiracNMSSM and including the impact of the external

momenta in the loop functions. Details about the calculation in the Higgs sector are

given in appendix D.

• The dominant 2-loop corrections (O(α2
t ),O(αtαs),O(αtαb)) known from the MSSM

are included [75–79]. By including these corrections, we have reduced the theoretical

uncertainty of the Higgs mass. However, since two loop contributions involving λ

which are potentially important for large λ are missing, the remaining uncertainty is

still expected to be slightly larger in comparison to the MSSM with the Higgs mass

calculated at the same level.

• Prediction for precision observables like b → sγ, g − 2 or B0
s,d → µ̄µ are derived at

the one-loop level which can be used to further constrain models. Also all of these

calculations are automatically adjusted to the present model by SARAH as explained

in ref. [80].

• All SUSY thresholds are included when calculating the gauge and Yukawa couplings

in the DR scheme from the measured values of SM fermion and gauge boson masses,

GF and αs(MZ).

2The model files might become public with a future release of SARAH. If you are interested in them

beforehand, please contact the authors.
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• The RGE running is performed at the 2-loop level without any approximation. To

calculate the fine tuning, we vary each of the independent parameters at the GUT

scale, run all the parameters down to the weak scale and evaluate the shift in the Z

mass by consistently solving all tadpole equations with respect to all vevs numerically.

The last step, which is necessary to get the precise fine tuning is not yet part of the

public version of SARAH but will be included in the next update.

For the calculation of the relic density we have used MicrOmegas and created the corre-

sponding model files for the DiracNMSSM also with SARAH. To perform the parameter

scans we made use of SSP [81]. The exchange of parameter values between SPheno modules

written by SARAH and MicrOmegas model files also written by SARAH happens automatically

by using the SLHAplus functionality [82] of CalcHep [83, 84].

This is the same setup which has been used in previous studies to compare the fine-

tuning in the MSSM, NMSSM and GNMSSM, see refs. [22, 23]. A new feature developed in

the context of this work is the automatization of the fine tuning routine in SARAH, allowing

for the calculation of the fine tuning in any implemented model without the need to change

the SPheno code per hand.

We have to mention that there is one issue which is still hard to include with the

same precision as the other aspects: the question if a parameter point is ruled out by LHC

searches or not. To be sure one would have to make a collider study for each parameter

point what is far beyond the scope of this work here.3 As discussed below, the non-universal

gaugino mass case in the GNMSSM often leads to a compressed SUSY spectrum with small

mass differences between gauginos and the LSP that makes SUSY discovery more difficult.

To account for this in a manner consistent with the non-observation of superpartners at

the LHC we implemented a cut on the gluino mass as a function of the gluino-LSP mass

difference as presented in [88, 89]. In figure 7 of [88] two bounds are shown, a weaker one for

decoupled squarks and a stronger one for msquark ∼ mgluino. Most parameter space points

of interest to us are in the intermediate regime, but we will use the stronger bound here.4

We further require the chargino and slepton masses to be above 100 GeV. While these

limits are rather conservative, simplified models typically assume a very light or massless

lightest neutralino and are not applicable for this study. In any case, almost all points have

much larger slepton and chargino masses, so a more aggressive cut would not qualitatively

change our results. We also require that the lightest supersymmetric particle (LSP) is a

neutralino which is a good dark matter candidate and its relic density does not exceed the

5σ PLANCK [90] upper bound of Ωh2 ≤ 0.1334. In addition we check that the direct detec-

tion cross section is consistent with the latest result from LUX [91]. It turns out that only a

small fraction of Wino and higgsino like LSPs would violate this bound after all other cuts

are imposed, which therefore does not affect the allowed parameter regions significantly.

3However, also this situation is expected to be improved significantly since several tools are currently

developed to test SUSY points against LHC results [85–87].
4This of course assumes that the bound on mgluino ∼ msquark is at least as strong as say mgluino ∼

0.7 ·msquark. This is not quite clear as in the case of compressed spectra the gluino is still very close in mass

to the lightest neutralino while some missing ET could be coming from the squarks. On the other hand

the production cross section will be smaller in this case. As noted above a thorough study would need to

examine every parameter point individually. Here we will content ourselves with this approximate cut.
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4 Exploring the DiracNMSSM vs. the GNMSSM

In the following we will study the fine tuning of the DiracNMSSM and compare it with

the GNMSSM. As there are already detailed studies of the fine tuning of the GNMSSM

compared with the MSSM [22, 23] and NMSSM [22] using the same fine tuning measure,

we refrain from repeating these comparisons here. The superpotential of the GNMSSM is

given by

W =WMSSM + λSHuHd + ξsS +
1

2
µsS

2 +
1

3
κS3 , (4.1)

and the corresponding soft-breaking terms read

Vsoft = Vsoft,MSSM +m2
s|s|2 +

(
1

3
κAκs

3 + λAλshuhd + bss
2 + tss+ h.c.

)
. (4.2)

4.1 Universal gaugino masses

Let us first concentrate on the fine tuning in the DiracNMSSM in the case that all gaug-

ino masses unify at the GUT scale. We solve the four conditions for correct EWSB for

{µ, bµ, ts, ts̄}. This leaves us with 16 input parameters

m0,m1/2, A0, tanβ,m2
hu ,m

2
hd
, λ, Aλ, vs, vs̄,Ms, bs,m

2
s,m

2
s̄, ξs, ξs̄ . (4.3)

For the case of universal gaugino masses the lightest gaugino will always be a bino. This

potentially leaves a mixture of bino-, higgsino, and singlino-like neutralinos as LSP can-

didates. For the bino it is difficult to achieve a small enough relic abundance except in

the stau coannihilation or Higgs funnel regions while the singlino turns out to be typically

rather heavy in the region of interest. Accordingly most of the viable points we find have

a LSP with a sizable higgsino fraction.

The overall result is summarized in figure 4. This plot shows the fine tuning as function

of the SM-like Higgs mass for the DiracNMSSM (left) and the GNMSSM (right). Several

different cuts are indicated: (i) light blue points correspond to no cuts, (ii) medium blue

points include LHC limits on SUSY masses, and (iii) dark blue points include in addition

the upper limit on the dark matter abundance as well as the limit from direct detection

searches. Note that these plots are combinations of several scans of different regions in the

parameter space of the models. Since we have zoomed into interesting regions with a small

or moderate fine tuning the density of points can’t be interpreted as some probability

measure. Nevertheless, it is interesting that there is no big difference between the best

fine tuning after the LHC and after the LHC and dark matter cut for the DiracNMSSM.

The reason is that the lightest neutralino in the DiracNMSSM turns out to have easily

a large Higgsino fraction which is sufficient to reduce the dark matter abundance to the

allowed level. One can see that the best fine tuning consistent with all observables in the

DiracNMSSM with unified gaugino masses is about 70. This is not improved if we dropped

the upper limit on the neutralino relic density. This value is, of course, significantly better

than in the MSSM where one expects ∆ & 300 and also improves the situation compared to

the NMSSM. However, it is of the same size as the fine tuning reported for the GNMSSM

in a similar setup, see the right plot in figure 4. Here we find as best fine tuning ∆ ' 78
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Figure 4. The fine tuning as a function of the SM like Higgs mass for the DiracNMSSM (left) and

the GNMSSM (right). The light blue points are before any cuts. For the dark blue points we use

appropriate SUSY and dark matter cuts.

including the DM cut and ∆ ' 71 without the DM cut. The best points for the GNMSSM

and DiracNMSSM including the DM cut are given in table 1.

To compare the dependence of the fine tuning in both models we have randomly picked

200,000 valid points for each model. The parameter values for all points are in the ranges

m0 ∈ [0, 1] TeV , m1/2 ∈ [0, 1] TeV , tanβ ∈ [1.5, 4.0]

λ ∈ [1.0, 1.7] , Aλ ∈ [−1.5, 1.5] TeV , A0 ∈ [−2.5, 2.5] TeV

Ms, µs ∈ [−10, 10] TeV , bs ∈ [−10, 10] TeV2 , vs ∈ [−2, 2] TeV

m2
hd
∈ [−5, 5] TeV2 , m2

hu ∈ [−5, 5] TeV2 , m2
s ∈ [−5, 5] TeV2 .

in addition, the specific parameters for the DiracNMSSM have been chosen to be

vs̄ ∈ [−2, 2] GeV , m2
s̄ ∈ [0, 104] TeV2

and those for the GNMSSM

κ ∈ [−1, 1] , Aκ ∈ [−1.5, 1.5] TeV .

Note, since the points shown in the following are chosen randomly from the full data-set

they don’t include the points with the best fine tuning which have been found for both

models. They are just meant to demonstrate the general similarities and differences in the

fine tuning of both models.

The effect of the different cuts can be summarized as follows:

DiracNMSSM GNMSSM

Valid points 200,000 200,000

After SUSY cuts 52,623 64,514

After Higgs cut 5,527 23,783

After DM cut 943 (13) 204 (55)

After direct detection cut 918 (13) 195 (51)
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Figure 5. Fine tuning vs. m0, m1/2 and A0 in the DiracNMSSM (first line) and GNMSSM (second

line). With increasing saturation the following cuts are applied: (i) no cut, (ii) cut on SUSY masses,

(iii) cut on the SM like Higgs mass, (iv) cut on the upper limit of the dark matter abundance.

In both models the SUSY cuts rule out about 2/3 to 3/4 of the valid points. That’s

not surprising since the changes in the Higgs sector are expected to have only a small

impact on the squark and gluino masses and for m1/2 . 750 GeV the gluino mass turns

out to be too light. However, there are two obvious differences: while it seems to be

much easier to accommodate a Higgs mass in the expected range in the GNMSSM than

in the DiracNMSSM, the DiracNMSSM is doing better in satisfying the upper limit of

the dark matter abundance. The reason for this is, as mentioned already above, that the

lightest neutralino in the DiracNMSSM is much more often a Higgsino which annihilates

very efficiently. The numbers in brackets refer to points which are consistent with the LSP

making up all of the dark matter, i.e. where also a lower bound on the relic abundance

is imposed.

We turn now to the dependence of the fine tuning on the different parameters. For

this purpose the fine tuning versus m0, m1/2 and A0 is shown in figure 5, versus λ, Aλ and

Ms/µs in figure 6, versus vs, µ and bµ in figure 7, and versus m2
hd

, m2
hu

and m2
s in figure 8.

For the parameters not shown here (bs, m
2
s̄, vs̄, κ, Aκ) there is no visible dependence of

the fine tuning on those parameters.

In figure 5 there is a very strong dependence of the fine tuning in both models on

the gaugino mass parameters m1/2. Small values for m1/2 are usually forbidden by the

gluino searches at the LHC. That’s one of the main reasons which pushes the fine tuning

to larger values. The impact of m0 is rather moderate in both models, as long as it is not

too large (as we don’t assume the sfermion masses to unify with the soft Higgs masses,

the focus point solution for large m0 won’t work here). Further the DiracNMSSM and the

GNMSSM seem to slightly favour positive A0. The fine tuning as function of the additional

superpotential parameters λ and Ms or µs is shown in figure 6. While λ plays an important
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Figure 6. Fine tuning vs. λ, Aλ and Ms in the DiracNMSSM (first line) and GNMSSM (second

line). The color code is the same as in figure 5.

role in lifting the Higgs mass to the desired range, only a mild preference towards very large

λ in terms of the fine tuning is seen. On the other hand the dependence on Ms is much

more pronounced. First, there are hardly any valid points for |Ms| < 1 TeV. The reason for

this in the DiracNMSSM has already been discussed in section 2.3.1: usually, large values

of M2
s are needed to get a large enough Higgs mass or even three positive eigenvalues of the

Higgs mass matrix squared. Similarly, it is very difficult to find valid parameter points in

the GNMSSM which don’t suffer from tachyonic states in the Higgs sector.5 Furthermore,

even for |Ms| > 4 TeV there is a strong correlation between the fine tuning and the value

of Ms in the DiracNMSSM after the Higgs cut is applied. Usually very large values of Ms

are needed to reduce the fine tuning. The reason is that the tree-level mass of the SM like

Higgs increases with Ms and therefore for large values of Ms the necessity of large loop

corrections due to heavy stops is reduced. That’s different to the GNMSSM where the

relation between the fine tuning and µs is roughly flat in this range even after the Higgs

mass cut. In figure 7 we show the fine tuning as function of vs. While the fine tuning in the

GNMSSM shows hardly any dependence on the singlet VEV after all cuts, the fine tuning

in the DiracNMSSM increases with increasing |vs|. Thus, singlet VEVs below 1 TeV are

preferred in the DiracNMSSM. One might be surprised that the fine tuning depends on vs
at all since this parameter does not enter eq. (3.1). However, one can see from eq. (2.17)

that large |vs| also leads in general to larger |µ|. That the fine tuning in the MSSM strongly

depends on µ is well known. As we can see in the middle of figure 7 this is also the case for

the DiracNMSSM and the GNMSSM. |µ| should be not larger than a few hundred GeV to

have good fine tuning.

5This seems at odds with a number of NMSSM studies, which of course have µs = 0. One should note

however that the density of valid points in the NMSSM is significantly smaller than in the MSSM, which

indirectly shows up here.
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Figure 7. Fine tuning vs. vs, µ and bµ in the DiracNMSSM (first line) and GNMSSM (second

line). Here µ and bµ are given at the SUSY scale. The color code is the same as in figure 5.

From the model building point of view, the main difference between the GNMSSM and

DiracNMSSM is the extended singlet sector of the DiracNMSSM. A second singlet was in-

troduced to allow for smaller values of m2
s without decoupling of the tree-level contribution

to the Higgs mass for large singlet masses. This in turn was supposed to reduce the fine

tuning in the DiracNMSSM. However, the plots in the last row in figure 8 show that the

fine tuning with respect to m2
s is rather mild and also in the GNMSSM there are points

after all cuts with m2
s = 0. This might be the main reason why there is not a significant

improvement in the fine tuning in the DiracNMSSM compared to the GNMSSM. Actually,

it turns out that the fine tuning in both models is roughly the same for universal gaugino

masses as we have seen.

4.2 Non-universal gaugino masses

As we have mentioned before, non-universal gaugino masses tend to improve the fine tuning

through the appearance of a new “focus point” that makes the Higgs mass less sensitive to

the gaugino mass scale [43–54]. We assume that a and b are fixed by the underlying theory

such that their contributions to the fine tuning are absent. As discussed in [23, 47] values

of a and b in the low-focus-point region occur naturally in a variety of models.

We show in figure 9 the overall fine tuning vs. the mass of the SM-like Higgs for this

case. We see that in both models it improves significantly. The best fine tuning we find

now for the DiracNMSSM fulfilling all experimental constraints and satisfying the upper

limit of the neutralino abundance is ∆ ' 32, for the GNMSSM we even find points with

∆ ' 14 (for more details about the spectra of these points see table 1). Here we have

assumed that the UV physics results in a fixed ratio of the gaugino masses at the high

scale, i.e. we have not included the fine tuning with respect to the parameters a and b.

While this assumption is well motivated, it is interesting to note that a strict ratio of the
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Figure 8. Fine tuning vs. m2
hd

, m2
hu

and m2
s in the DiracNMSSM (first line) and GNMSSM

(second line). The color code is the same as in figure 6.

Figure 9. The fine tuning as a function of the SM like Higgs mass allowing for non-universal

gaugino masses for the DiracNMSSM (left) and the GNMSSM (right). The light blue points are

before any cuts. For the dark blue points we use appropriate SUSY and dark matter cuts. The

minimal FT we find in the DiracNMSSM is ∆ = 32, in the GNMSSM it is ∆ = 14. The narrow

plot on the right depicts the fine tuning in the GNMSSM taking into account the fine tuning with

respect to a and b for a couple of interesting points, showing that the minimal fine tuning does not

greatly depend on the assumption of fixed gaugino mass ratios.

wino to gluino masses is not necessary as long as both are comparable at the weak scale; in

the case of the GNMSSM, including the fine tuning with respect to a and b, the minimum

fine tuning is still only 24. Hence, dropping the assumption of definite a and b ratios does

not greatly increase the fine tuning.

The plot also shows that before SUSY cuts the fine tuning in both models is very

similar. We find the difference between the two models in the case of nonuniversal gaugino

masses to be the following: the mass of the higgsino-like neutralino is set by µeff = µ +
1√
2
λEW vs, while the fine tuning is mainly dominated by µ. In the GNMSSM it seems to
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Figure 10. Smallest fine tuning in the gluino-squark and gluino-LSP plane for the DiracNMSSM

(top) and the GNMSSM (bottom). It can be seen that low fine tuning often corresponds to com-

pressed spectra.

be easier to have sizable µeff & 700 GeV which would allow for a compressed spectrum

and hence lighter gluinos. In the DiracNMSSM on the other hand µeff is typically closer

to µ. This means that for very compressed spectra with mhiggsino ∼ mgluino ∼ 700 GeV

the µ term is sizable, implying moderate fine tuning. On the other hand for very small

values of µ we typically have a rather light higgsino-like LSP. In this case a compressed

spectrum is not possible and the gluino has to be correspondingly heavier, implying larger

fine tuning.

In figure 10 we present the best fine tuning we find in the (mgluino,msquark) and in

the (mgluino,mLSP) plane. We see that a very good fine tuning is not only possible close

to the parameter regions where the gluino is nearly degenerate with the LSP but also for

heavy gluinos above 2 TeV. Also note that our scans were optimized to find the smallest

fine tuning, so it is conceivable that the fine-tuning for large masses is overestimated. The

heavy gluino case will be hard to exclude by the next LHC runs [92]. Thus, despite the

excellent performance of the LHC experiments there is still the possibility of SUSY with a

fine tuning less than 100 which can’t be tested in the near future. However, to find models

with this small fine tuning for gluinos above 2 TeV one has to give up the most constrained

models with universal soft parameters for all scalars and all gauginos.
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5 Summary and conclusions

We have performed a careful evaluation of the level of fine tuning in the DiracNMSSM. For

this purpose we have implemented this model in public computer tools to get a precise pre-

diction for the Higgs mass, the dark matter relic abundance, and the SUSY mass spectrum.

We have considered rather general high scale boundary conditions — in particular we as-

sumed that the Higgs and singlet soft terms are independent of m0 and of each other. Also

all the A-terms were taken to be independent. If we force the gaugino mass terms to unify

at the GUT scale the minimal fine tuning allowed by all experimental constraints is about

70 for both the DiracNMSSM and the GNMSSM. If we relax the unification conditions in

the gaugino sector the minimal fine tuning gets improved to 32 in the DiracNMSSM and

14 in the GNMSSM. Hence, both models significantly improve the fine tuning situation

compared to the MSSM and the level of fine tuning is comparable in both models, albeit

slightly lower in the GNMSSM.
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GNMSSM I GNMSSM II DiracNMSSM I DiracNMSSM II

m0 [GeV] 525 50 414 228

m1/2 [GeV] 774 460 781 463

a 1 8.2 1 -6.7

b 1 -4.2 1 -3.8

tanβ 2.3 2.2 2.4 2.2

A0 [GeV] 972 -923 4493 -1844

λ 1.68 1.58 1.65 1.61

κ 0.002 0.146 - -

Aλ [GeV] 964 -133 1217 -1471

Aκ [GeV] 712 -374 - -

vs [GeV] -1024 906 34 430

vs̄ [GeV] - - 0.1 150

Ms(µs) [GeV] -6607 3170 8105 -5097

bs [GeV2] −1.2 · 107 1.9 · 106 8.5 · 104 1.8 · 106

m2
s [GeV2] 4.6 · 106 2.6 · 105 7.7 · 105 8.6 · 105

m2
s̄ [GeV2] - - 5.2 · 1010 2.4 · 109

m2
hd

[GeV2] 7.7 · 105 1.3 · 105 5.2 · 105 1.4 · 105

m2
hu

[GeV2] 2.4 · 106 1.8 · 105 2.7 · 106 1.5 · 105

mh1 [GeV] 126.3 122.8 123.1 122.7

mh2 [GeV] 718 1561 1243 1538

mh3 [GeV] 2815 1670 5657 3550

mχ̃0
1

[GeV] 350 687 336 707

mχ̃+
1

[GeV] 642 690 360 711

mχ̃+
2

[GeV] 851 1611 649 1448

mt̃1
[GeV] 1131 765 672 738

mb̃1
[GeV] 1403 1013 1238 1022

mτ̃1 [GeV] 532 1383 407 1157

md̃R
[GeV] 1528 1014 1493 1022

md̃L
[GeV] 1597 1528 1544 1466

mũR [GeV] 1559 1283 1542 1209

mũL [GeV] 1595 1527 1544 1464

mg̃ [GeV] 1689 1112 1681 1127

Ωh2 0.03 0.04 0.07 0.04

∆ 78.4 14.4 69.5 32.5

Table 1. Benchmark points (points with smallest fine tuning for each case) for the DiracNMSSM

and the GNMSSM with and without universal gaugino masses.
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A Renormalisation group equations

For those parameters present in the MSSM, we give only the difference to the RGEs in

comparison to the MSSM. The convention for the β function and anomalous dimensions are

βx =
1

16π2
β(1)
x +

1

(16π2)2
β(2)
x , γx =

1

16π2
γ(1)
x +

1

(16π2)2
γ(2)
x . (A.1)

The calculation of the β-functions is performed by SARAH. The calculation of β-functions

for SUSY models up to two loop with SARAH are based on the generic results given in

refs. [93–98].

A.1 Anomalous dimensions

∆γ
(2)
q̂ = −|λ|2

(
Y †d Yd + Y †uYu

)
(A.2)

∆γ
(2)

l̂
= −|λ|2Y †e Ye (A.3)

∆γ
(1)

Ĥd
= |λ|2 (A.4)

∆γ
(2)

Ĥd
= −3|λ|2

(
|λ|2 + Tr

(
YuY

†
u

))
(A.5)

∆γ
(1)

Ĥu
= |λ|2 (A.6)

∆γ
(2)

Ĥu
= −|λ|2

(
3|λ|2 + 3Tr

(
YdY

†
d

)
+ Tr

(
YeY

†
e

))
(A.7)

∆γ
(2)

d̂
= −2|λ|2Y ∗d Y T

d (A.8)

∆γ
(2)
û = −2|λ|2Y ∗u Y T

u (A.9)

∆γ
(2)
ê = −2|λ|2Y ∗e Y T

e (A.10)

γ
(1)
ŝ = 2|λ|2 (A.11)

γ
(2)
ŝ = −2

5
|λ|2
(

10|λ|2 − 15g2
2 +15Tr

(
YdY

†
d

)
+15Tr

(
YuY

†
u

)
− 3g2

1 +5Tr
(
YeY

†
e

))
(A.12)

γ
(1)
ˆ̄s

= 0 (A.13)

γ
(2)
ˆ̄s

= 0 (A.14)

A.2 Gauge couplings

∆β(2)
g1

= −6

5
g3

1|λ|2 (A.15)

∆β(2)
g2

= −2g3
2|λ|2 (A.16)

A.3 Gaugino mass parameters

∆β
(2)
M1

= −12

5
g2

1λ
∗
(
M1λ− Tλ

)
(A.17)

∆β
(2)
M2

= 4g2
2λ
∗
(
−M2λ+ Tλ

)
(A.18)
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A.4 Trilinear superpotential parameters

∆β
(1)
Yd

= Yd|λ|2 (A.19)

∆β
(2)
Yd

= −|λ|2
(

3Yd|λ|2 + 3YdTr
(
YuY

†
u

)
+ 3YdY

†
d Yd + YdY

†
uYu

)
(A.20)

∆β
(1)
Ye

= Ye|λ|2 (A.21)

∆β
(2)
Ye

= −3|λ|2
(
Ye|λ|2 + YeTr

(
YuY

†
u

)
+ YeY

†
e Ye

)
(A.22)

∆β
(1)
Yu

= Yu|λ|2 (A.23)

∆β
(2)
Yu

= −|λ|2
(

3Yu|λ|2 + 3YuTr
(
YdY

†
d

)
+ 3YuY

†
uYu + YuTr

(
YeY

†
e

)
+ YuY

†
d Yd

)
(A.24)

β
(1)
λ = −3g2

2λ+ 3λTr
(
YdY

†
d

)
+ 3λTr

(
YuY

†
u

)
+ 4λ2λ∗ − 3

5
g2

1λ+ λTr
(
YeY

†
e

)
(A.25)

β
(2)
λ = − 1

50
λ
(

500|λ|4 − 207g4
1 − 90g2

1g
2
2 − 375g4

2 + 20
(
g2

1 − 40g2
3

)
Tr
(
YdY

†
d

)
(A.26)

− 20g2
1Tr
(

3YeY
†
e +2YuY

†
u

)
− 30|λ|2

(
10g2

2 − 5Tr
(

3YdY
†
d + 3YuY

†
u +YeY

†
e

)
+2g2

1

)
− 800g2

3Tr
(
YuY

†
u

)
+15Tr

(
3YdY

†
d YdY

†
d +2YdY

†
uYuY

†
d +YeY

†
e YeY

†
e +3YuY

†
uYuY

†
u

))

A.5 Bilinear superpotential parameters

∆β(1)
µ = 2µ|λ|2 (A.27)

∆β(2)
µ = −µ|λ|2

(
3Tr
(
YdY

†
d

)
+ 3Tr

(
YuY

†
u

)
+ 6|λ|2 + Tr

(
YeY

†
e

))
(A.28)

β
(1)
Ms

= 2Ms|λ|2 (A.29)

β
(2)
Ms

=−2

5
Ms|λ|2

(
10|λ|2−15g2

2 +15Tr
(
YdY

†
d

)
+15Tr

(
YuY

†
u

)
−3g2

1 +5Tr
(
YeY

†
e

))
(A.30)

A.6 Trilinear soft-breaking parameters

∆β
(1)
Td

= λ∗
(

2YdTλ + λTd

)
(A.31)

∆β
(2)
Td

= −λ∗
(

3|λ|2
(

4YdTλ + λTd

)
+ 2Tλ

(
3YdTr

(
YuY

†
u

)
+ 3YdY

†
d Yd + YdY

†
uYu

)
(A.32)

+ λ
(

2YdY
†
uTu+3TdTr

(
YuY

†
u

)
+4YdY

†
d Td+5TdY

†
d Yd+6YdTr

(
Y †uTu

)
+TdY

†
uYu

))
∆β

(1)
Te

= λ∗
(

2YeTλ + λTe

)
(A.33)

∆β
(2)
Te

= −λ∗
(

3|λ|2
(

4YeTλ + λTe

)
+ 6Tλ

(
YeTr

(
YuY

†
u

)
+ YeY

†
e Ye

)
+ λ

(
3TeTr

(
YuY

†
u

)
+ 4YeY

†
e Te + 5TeY

†
e Ye + 6YeTr

(
Y †uTu

)))
(A.34)

∆β
(1)
Tu

= λ∗
(

2YuTλ + λTu

)
(A.35)
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∆β
(2)
Tu

= −λ∗
(

3|λ|2
(

4YuTλ + λTu

)
+ 2Tλ

(
YuTr

(
3YdY

†
d + YeY

†
e

)
+ 3YuY

†
uYu + YuY

†
d Yd

)
+ λ

(
2YuY

†
d Td + 4YuY

†
uTu + TuY

†
d Yd + 5TuY

†
uYu + 3TuTr

(
YdY

†
d

)
+ TuTr

(
YeY

†
e

)
+ 6YuTr

(
Y †d Td

)
+ 2YuTr

(
Y †e Te

)))
(A.36)

β
(1)
Tλ

= +
6

5
g2

1M1λ+ 6g2
2M2λ+ Tλ

(
12|λ|2 − 3g2

2 + Tr
(

3YdY
†
d + YeY

†
e + 3YuY

†
u

)
− 3

5
g2

1

)
+ 6λTr

(
Y †d Td

)
+ 2λTr

(
Y †e Te

)
+ 6λTr

(
Y †uTu

)
(A.37)

β
(2)
Tλ

= −50|λ|4Tλ −
3

5
|λ|2
(
Tλ

(
15Tr

(
YeY

†
e

)
− 30g2

2 + 45Tr
(
YdY

†
d + YuY

†
u

)
− 6g2

1

)
+ 2λ

(
10g2

2M2 + 15Tr
(
Y †d Td

)
+ 15Tr

(
Y †uTu

)
+ 2g2

1M1 + 5Tr
(
Y †e Te

)))
+ Tλ

(207

50
g4

1 +
9

5
g2

1g
2
2 +

15

2
g4

2−
2

5

(
g2

1−40g2
3

)
Tr
(
YdY

†
d

)
+

2

5
g2

1Tr
(

3YeY
†
e + 2YuY

†
u

)
+ 16g2

3Tr
(
YuY

†
u

)
− 3Tr

(
3YdY

†
d YdY

†
d + 2YdY

†
uYuY

†
d + YeY

†
e YeY

†
e + 3YuY

†
uYuY

†
u

))
− 2

25
λ
(

207g4
1M1+45g2

1g
2
2(M1+M2)+375g4

2M2−10
(
g2

1M1 − 40g2
3M3

)
Tr
(
YdY

†
d

)
+ 30g2

1M1Tr
(
YeY

†
e

)
+ 20g2

1M1Tr
(
YuY

†
u

)
+ 400g2

3M3Tr
(
YuY

†
u

)
+ 10g2

1Tr
(
Y †d Td

)
− 400g2

3Tr
(
Y †d Td

)
− 30g2

1Tr
(
Y †e Te

)
− 20g2

1Tr
(
Y †uTu

)
− 400g2

3Tr
(
Y †uTu

)
+ 150Tr

(
3YdY

†
d TdY

†
d + YdY

†
uTuY

†
d + YeY

†
e TeY

†
e + YuY

†
d TdY

†
u + 3YuY

†
uTuY

†
u

))
(A.38)

A.7 Bilinear soft-breaking parameters

∆β
(1)
Bµ = 2λ∗

(
2µTλ + 3λBµ

)
(A.39)

∆β
(2)
Bµ = −1

5
λ∗
(
λBµ

(
25Tr

(
YeY

†
e

)
− 36g2

1 − 180g2
2 + 70|λ|2 + 75Tr

(
YdY

†
d + YuY

†
u

))
+ 2µ

(
80|λ|2Tλ + 5Tλ

(
3Tr
(
YdY

†
d

)
+ 3Tr

(
YuY

†
u

)
+ Tr

(
YeY

†
e

))
+ 3λ

(
15Tr

(
Y †d Td

)
+ 15Tr

(
Y †uTu

)
+ 30g2

2M2 + 5Tr
(
Y †e Te

)
+ 6g2

1M1

)))
(A.40)

β
(1)
bs

= 2λ∗
(

2MsTλ + λbs

)
(A.41)

β
(2)
bs

= −2

5
λ∗
(
λbs

(
10|λ|2 − 15g2

2 + 15Tr
(
YdY

†
d

)
+ 15Tr

(
YuY

†
u

)
− 3g2

1 + 5Tr
(
YeY

†
e

))
+ 2Ms

(
Tλ

(
− 15g2

2 + 15Tr
(
YdY

†
d

)
+ 15Tr

(
YuY

†
u

)
+ 20|λ|2 − 3g2

1 + 5Tr
(
YeY

†
e

))
+ λ
(

15g2
2M2 + 15Tr

(
Y †d Td

)
+ 15Tr

(
Y †uTu

)
+ 3g2

1M1 + 5Tr
(
Y †e Te

))))
(A.42)

A.8 Linear soft-breaking parameters

β
(1)
ts = 2λ∗

(
2ξsTλ + λts

)
+ 4Bµ∗Tλ + 4

(
m2
hd

+m2
hu

)
λµ∗ (A.43)
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β
(2)
ts = −2

5

(
10λλ∗,2

(
4ξsTλ + λts

)
+ λ∗

(
20
(

2m2
hd

+ 2m2
hu +m2

s

)
λ2µ∗

+ λts

(
15Tr

(
YdY

†
d

)
− 3
(

5g2
2 − 5Tr

(
YuY

†
u

)
+ g2

1

)
+ 5Tr

(
YeY

†
e

))
+ 2
(
Tλ

(
20λBµ∗ + ξs

(
15Tr

(
YdY

†
d

)
− 3
(

5g2
2 − 5Tr

(
YuY

†
u

)
+ g2

1

)
+ 5Tr

(
YeY

†
e

)))
+ ξsλ

(
15Tr

(
Y †d Td

)
+ 3
(

5g2
2M2 + 5Tr

(
Y †uTu

)
+ g2

1M1

)
+ 5Tr

(
Y †e Te

))))
+ 2
(
Bµ∗

(
Tλ

(
15Tr

(
YdY

†
d

)
− 3
(

5g2
2 − 5Tr

(
YuY

†
u

)
+ g2

1

)
+ 5Tr

(
YeY

†
e

))
+ λ
(

15Tr
(
Y †d Td

)
+ 3
(

5g2
2M2 + 5Tr

(
Y †uTu

)
+ g2

1M1

)
+ 5Tr

(
Y †e Te

)))
+ µ∗

(
− 3g2

1m
2
hd
λ− 15g2

2m
2
hd
λ− 3g2

1m
2
huλ− 15g2

2m
2
huλ− 6g2

1λ|M1|2 − 30g2
2λ|M2|2

+ 20λ|Tλ|2 + 3g2
1M1Tλ + 15g2

2M2Tλ + 30m2
hd
λTr

(
YdY

†
d

)
+ 15m2

huλTr
(
YdY

†
d

)
+ 10m2

hd
λTr

(
YeY

†
e

)
+ 5m2

huλTr
(
YeY

†
e

)
+ 15m2

hd
λTr

(
YuY

†
u

)
+ 30m2

huλTr
(
YuY

†
u

)
+ 15TλTr

(
T ∗dY

T
d

)
+15λTr

(
T ∗dT

T
d

)
+5TλTr

(
T ∗e Y

T
e

)
+5λTr

(
T ∗e T

T
e

)
+15TλTr

(
T ∗uY

T
u

)
+ 15λTr

(
T ∗uT

T
u

)
+ 15λTr

(
YdY

†
dm

2∗
d

)
+ 15λTr

(
Ydm

2∗
q Y

†
d

)
+ 5λTr

(
YeY

†
em

2∗
e

)
+ 5λTr

(
Yem

2∗
l Y

†
e

)
+ 15λTr

(
YuY

†
um

2∗
u

)
+ 15λTr

(
Yum

2∗
q Y

†
u

))))
(A.44)

β
(1)
ts̄ = 4MsBµλ

∗ (A.45)

β
(2)
ts̄ = −4

5
Msλ

∗
(
Bµ
(

10|λ|2 − 15g2
2 + 15Tr

(
YdY

†
d

)
+ 15Tr

(
YuY

†
u

)
− 3g2

1 + 5Tr
(
YeY

†
e

))
+ µ

(
10λ∗Tλ + 15g2

2M2 + 15Tr
(
Y †d Td

)
+ 15Tr

(
Y †uTu

)
+ 3g2

1M1 + 5Tr
(
Y †e Te

)))
(A.46)

A.9 Soft-breaking scalar masses

∆β
(2)
m2
q

= −2T ∗λ

(
λ
(
Y †d Td + Y †uTu

)
+
(
Y †d Yd + Y †uYu

)
Tλ

)
− λ∗

(
2
(

2m2
hd

+m2
hu +m2

s

)
λY †d Yd + 2

(
2m2

hu +m2
hd

+m2
s

)
λY †uYu

+ λm2
qY
†
d Yd + λm2

qY
†
uYu + 2λY †dm

2
dYd + λY †d Ydm

2
q + 2λY †um

2
uYu

+ 2λT †dTd + 2λT †uTu + λY †uYum
2
q + 2T †dYdTλ + 2T †uYuTλ

)
(A.47)

∆β
(2)

m2
l

= −2T ∗λ

(
λY †e Te + Y †e YeTλ

)
− λ∗

(
2
(

2m2
hd

+m2
hu +m2

s

)
λY †e Ye

+ λ
(

2T †eTe + 2Y †em
2
eYe +m2

l Y
†
e Ye + Y †e Yem

2
l

)
+ 2T †eYeTλ

)
(A.48)

∆β
(1)

m2
hd

= 2
((
m2
hd

+m2
hu +m2

s

)
|λ|2 + |Tλ|2

)
(A.49)

∆β
(2)

m2
hd

= −6
(

2
(
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hd
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hu +m2
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|λ|4 + T ∗λ
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(
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T ∗uY
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u
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+ λTr
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T ∗uT

T
u

)
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+ λTr
(
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qY
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uYu
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uYuY

†
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(A.50)

∆β
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hu
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hd
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hu +m2

s
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)
(A.51)
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hu
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T
e

)
+ 5λTr

(
3T ∗dT

T
d + T ∗e T

T
e + 3T ∗uT

T
u

)
+ 5λTr

(
3m2

dYdY
†
d +m2

eYeY
†
e +m2

l Y
†
e Ye + 3m2

qY
†
d Yd + 3m2

qY
†
uYu + 3m2

uYuY
†
u

)))
(A.57)

β
(1)

m2
s̄

= 0 (A.58)

β
(2)

m2
s̄

= 0 (A.59)
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A.10 Vacuum expectation values

∆β(1)
vd

= −vd|λ|2 (A.60)

∆β(2)
vd

=
3

10
vd|λ|2

(
10|λ|2 + 10Tr

(
YuY

†
u

)
−
(

5g2
2 + g2

1

)
ξ
)

(A.61)

∆β(1)
vu = −vu|λ|2 (A.62)

∆β(2)
vu =

1

10
vu|λ|2

(
10Tr

(
YeY

†
e

)
+ 30|λ|2 + 30Tr

(
YdY

†
d

)
− 3(g2

1 + 5g2
2)ξ
)

(A.63)

β(1)
vs = −2vs|λ|2 (A.64)

β(2)
vs =

2

5
vs|λ|2

(
10|λ|2−15g2

2 +5
(

3Tr
(
YdY

†
d

)
+3Tr

(
YuY

†
u

)
+Tr

(
YeY

†
e

))
−3g2

1

)
(A.65)

β(1)
vs̄ = 0 (A.66)

β(2)
vs̄ = 0 (A.67)

B Mass matrices

• Mass matrix for Charginos. Basis:
(
W̃−, H̃−d

)
,
(
W̃+, H̃+

u

)
mχ̃− =

(
M2

1√
2
g2vu

1√
2
g2vd

1√
2
vsλ+ µ

)
(B.1)

This matrix is diagonalized by U and V

U∗mχ̃−V † = mdia
χ̃− (B.2)

• Mass matrix for CP odd Higgs. Basis:(σd, σu, σs, σs̄) In Landau gauge the mass

matrix is given by

m2
A0 =


mσdσd mσuσd

1√
2
vu<

(
Tλ

)
− 1√

2
vu<

(
λM∗s

)
mσdσu mσuσu

1√
2
vd<

(
Tλ

)
− 1√

2
vd<

(
λM∗s

)
1√
2
vu<

(
Tλ

)
1√
2
vd<

(
Tλ

)
mσsσs −<

(
bs

)
− 1√

2
vu<

(
λM∗s

)
− 1√

2
vd<

(
λM∗s

)
−<
(
bs

)
m2
s̄ + |Ms|2

 (B.3)

with

mσdσd = |µ|2 +
√

2vs<(λµ∗) +
(
v2
s + v2

u

) |λ|2
2

+
1

8

(
g2

1 + g2
2

)(
v2
d − v2

u

)
+m2

hd
(B.4)

mσdσu =
1

4

(
4<
(
Bµ
)

+ 4<
(
λξ∗s

)
+
√

2
(

2vs̄<
(
λM∗s

)
+ 2vs<

(
Tλ

)))
(B.5)

mσuσu = |µ|2 +
√

2vs<(λµ∗) +
(
v2
d + v2

s

) |λ|2
2
− 1

8

(
g2

1 + g2
2

)(
v2
d − v2

u

)
+m2

hu (B.6)

mσsσs =
1

2

(
v2
d + v2

u

)
|λ|2 +m2

s + |Ms|2 (B.7)
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The gauge fixing part is the same as in the MSSM:

m2(ξZ) =
1

4


v2
d −vdvu 0 0

−vdvu v2
u 0 0

0 0 0 0

0 0 0 0

(g1 sin ΘW + g2 cos ΘW

)2
(B.8)

This matrix is diagonalized by ZA:

ZAm2
A0Z

A,† = mdia
2,A0 (B.9)

• Mass matrix for charged Higgs. Basis:
(
H−d , H

+,∗
u

)
,
(
H−,∗d , H+

u

)

m2
H− =

(
mH−

d H
−,∗
d

m∗
H+,∗
u H−,∗

d

mH−
d H

+
u

mH+,∗
u H+

u

)
(B.10)

with

mH−
d H

−,∗
d

= |µ|2 +
√

2vs<(λµ∗) + v2
s

|λ|2

2
+

1

8

(
g2

1

(
v2
d − v2

u

)
+ g2

2

(
v2
d + v2

u

))
+m2

hd
(B.11)

mH−
d H

+
u

=
1

4
g2

2vdvu +
1√
2
vsTλ + λ

(
− 1

2
vdvuλ

∗ +
1√
2
vs̄M

∗
s + ξ∗s

)
+Bµ (B.12)

mH+,∗
u H+

u
= |µ|2 +

√
2vs<(λµ∗) + v2

s

|λ|2

2
+

1

8

(
g2

1

(
v2
u − v2

d

)
+ g2

2

(
v2
d + v2

u

))
+m2

hu (B.13)

and

m2(ξW−) =
1

4
g2

2

(
v2
d −vdvu

−vdvu v2
u

)
(B.14)

This matrix is diagonalized by Z+:

Z+m2
H−Z

+,† = mdia
2,H− (B.15)

C Vertices

We give here the difference of Higgs and neutralino vertices in comparison to the MSSM.

The shown expressions are understood as

∆Γfields = ΓDiracNMSSM
fields − ΓMSSM

fields (C.1)

Chiral vertices are parametrized by

ΓLfieldsPL + ΓRfieldsPR (C.2)

with the projection operators PL and PR.
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C.1 Interactions with Fermions

∆ΓL
χ̃+
i χ̃

−
j A

0
k

=
1√
2
λU∗j2V

∗
i2Z

A
k3 (C.3)

∆ΓR
χ̃+
i χ̃

−
j A

0
k

= − 1√
2
λ∗Ui2Vj2Z

A
k3 (C.4)

∆ΓLχ̃0
i χ̃

0
jA

0
k

= − 1√
2
λ
(
N∗i3

(
N∗j4Z

A
k3 +N∗j5Z

A
k2

)
+N∗i4

(
N∗j3Z

A
k3 +N∗j5Z

A
k1

)
+N∗i5

(
N∗j3Z

A
k2 +N∗j4Z

A
k1

))
(C.5)

∆ΓRχ̃0
i χ̃

0
jA

0
k

=
1√
2
λ∗
(
ZAk1

(
Ni4Nj5 +Ni5Nj4

)
+ ZAk2

(
Ni3Nj5 +Ni5Nj3

)
+ ZAk3

(
Ni3Nj4 +Ni4Nj3

))
(C.6)

∆ΓL
χ̃0
i χ̃

−
j H

+
k

= −iλU∗j2N∗i5Z+
k2 (C.7)

∆ΓR
χ̃0
i χ̃

−
j H

+
k

= −iλ∗Vj2Ni5Z
+
k1 (C.8)

∆ΓL
χ̃+
i χ̃

−
j hk

= −i 1√
2
λU∗j2V

∗
i2Z

H
k3 (C.9)

∆ΓR
χ̃+
i χ̃

−
j hk

= −i 1√
2
λ∗Ui2Vj2Z

H
k3 (C.10)

∆ΓLχ̃0
i χ̃

0
jhk

= i
1√
2
λ
(
N∗i3

(
N∗j4Z

H
k3 +N∗j5Z

H
k2

)
+N∗i4

(
N∗j3Z

H
k3 +N∗j5Z

H
k1

)
+N∗i5

(
N∗j3Z

H
k2 +N∗j4Z

H
k1

))
(C.11)

∆ΓRχ̃0
i χ̃

0
jhk

= i
1√
2
λ∗
(
ZHk1

(
Ni4Nj5 +Ni5Nj4

)
+ ZHk2

(
Ni3Nj5 +Ni5Nj3

)
+ ZHk3

(
Ni3Nj4 +Ni4Nj3

))
(C.12)

∆ΓL
χ̃+
i χ̃

0
jH

−
k

= −iλV ∗i2N∗j5Z
+,∗
k1 (C.13)

∆ΓR
χ̃+
i χ̃

0
jH

−
k

= −iλ∗Z+,∗
k2 Ui2Nj5 (C.14)

C.2 Three scalar interactions

∆ΓA0
iA

0
jhk

= − i
4

(
λ∗
(

4λZAi3Z
A
j3

(
vdZ

H
k1 + vuZ

H
k2

)
+ 2ZAi1Z

A
j1

((
2vsλ+

√
2µ
)
ZHk3 + 2vuλZ

H
k2

)
+ ZAi2

(
2ZAj2

(
2vdλZ

H
k1 +

(
2vsλ+

√
2µ
)
ZHk3

)
+
√

2Ms

(
ZAj1Z

H
k4 − ZAj4ZHk1

))
−
√

2Ms

(
ZAi1

(
− ZAj2ZHk4 + ZAj4Z

H
k2

)
+ ZAi4

(
ZAj1Z

H
k2 + ZAj2Z

H
k1

)))
+
√

2
(
T ∗
λ

((
ZAi1Z

A
j2 + ZAi2Z

A
j1

)
ZHk3 + ZAi3

(
ZAj1Z

H
k2 + ZAj2Z

H
k1

)
+ ZAj3

(
ZAi1Z

H
k2 + ZAi2Z

H
k1

))
+ Tλ

((
ZAi1Z

A
j2 + ZAi2Z

A
j1

)
ZHk3 + ZAi3

(
ZAj1Z

H
k2 + ZAj2Z

H
k1

)
+ ZAj3

(
ZAi1Z

H
k2 + ZAi2Z

H
k1

))
+ λ
(

2µ∗
(
ZAi1Z

A
j1 + ZAi2Z

A
j2

)
ZHk3 +M∗

s

((
ZAi1Z

A
j2 + ZAi2Z

A
j1

)
ZHk4 −

(
ZAi1Z

A
j4 + ZAi4Z

A
j1

)
ZHk2

−
(
ZAi2Z

A
j4 + ZAi4Z

A
j2

)
ZHk1

))))
(C.15)

– 29 –



J
H
E
P
0
6
(
2
0
1
4
)
1
5
3

∆ΓA0
i d̃jβ d̃

∗
kγ

=
1

2
δβγ

(
− λ

3∑
b=1

3∑
a=1

Y ∗
d,abZ

D,∗
j3+aZ

D
kb + λ∗

3∑
b=1

ZD,∗jb

3∑
a=1

Yd,abZ
D
k3+a

)(
vsZ

A
i2 + vuZ

A
i3

)
(C.16)

∆ΓA0
i ẽj ẽ

∗
k

=
1

2

(
− λ

3∑
b=1

3∑
a=1

Y ∗
e,abZ

E,∗
j3+aZ

E
kb + λ∗

3∑
b=1

ZE,∗jb

3∑
a=1

Ye,abZ
E
k3+a

)(
vsZ

A
i2 + vuZ

A
i3

)
(C.17)

∆ΓA0
i ũjβ ũ

∗
kγ

=
1

2
δβγ

(
− λ

3∑
b=1

3∑
a=1

Y ∗
u,abZ

U,∗
j3+aZ

U
kb + λ∗

3∑
b=1

ZU,∗jb

3∑
a=1

Yu,abZ
U
k3+a

)(
vdZ

A
i3 + vsZ

A
i1

)
(C.18)

∆Γhihjhk =
i

4

(
− λ∗

(
2ZHi1

(
2λZHj2

(
vdZ

H
k2 + vuZ

H
k1

)
+ ZHj3

(
2vdλZ

H
k3 +

(
2vsλ+

√
2µ
)
ZHk1

)
+ ZHj1

((
2vsλ+

√
2µ
)
ZHk3 + 2vuλZ

H
k2

))
+ 2ZHi3

(√
2µ
(
ZHj1Z

H
k1 + ZHj2Z

H
k2

)
+ 2λ

(
ZHj1

(
vdZ

H
k3 + vsZ

H
k1

)
+ ZHj2

(
vsZ

H
k2 + vuZ

H
k3

)
+ ZHj3

(
vdZ

H
k1 + vuZ

H
k2

)))
+ ZHi2

(
−
√

2MsZ
H
j4Z

H
k1 + 2ZHj3

((
2vsλ+

√
2µ
)
ZHk2 + 2vuλZ

H
k3

)
+ 2ZHj2

(
2vdλZ

H
k1 +

(
2vsλ+

√
2µ
)
ZHk3

)
+ ZHj1

(
4vdλZ

H
k2 + 4vuλZ

H
k1 −

√
2MsZ

H
k4

))
−
√

2Ms

(
ZHi1

(
ZHj2Z

H
k4 + ZHj4Z

H
k2

)
+ ZHi4

(
ZHj1Z

H
k2 + ZHj2Z

H
k1

)))
+
√

2
((
T ∗
λ+Tλ

)(
ZHi1

(
ZHj2Z

H
k3+ZHj3Z

H
k2

)
+ZHi2

(
ZHj1Z

H
k3+ZHj3Z

H
k1

)
+ ZHi3

(
ZHj1Z

H
k2+ZHj2Z

H
k1

))
+ λ
(
− 2µ∗

((
ZHi1Z

H
j1 + ZHi2Z

H
j2

)
ZHk3 + ZHi3

(
ZHj1Z

H
k1 + ZHj2Z

H
k2

)
+ ZHj3

(
ZHi1Z

H
k1 + ZHi2Z

H
k2

))
+M∗

s

((
ZHi1Z

H
j2 + ZHi2Z

H
j1

)
ZHk4 + ZHi4

(
ZHj1Z

H
k2 + ZHj2Z

H
k1

)
+ ZHj4

(
ZHi1Z

H
k2 + ZHi2Z

H
k1

)))))
(C.19)

∆ΓhiH−
j H

+
k

= − i
2

(√
2
(
λµ∗ZHi3

(
Z+,∗
j1 Z+

k1 + Z+,∗
j2 Z+

k2

)
+ T ∗

λZ
+,∗
j2 ZHi3Z

+
k1

+ Z+,∗
j1

(
λM∗

sZ
H
i4 + TλZ

H
i3

)
Z+
k2

)
+ λ∗

(
Z+,∗
j1

((
2vsλ+

√
2µ
)
ZHi3Z

+
k1 − λ

(
vdZ

H
i2 + vuZ

H
i1

)
Z+
k2

)
+ Z+,∗

j2

(
2vsλZ

H
i3Z

+
k2 +

√
2MsZ

H
i4Z

+
k1 +

√
2µZHi3Z

+
k2 − vdλZ

H
i2Z

+
k1 − vuλZ

H
i1Z

+
k1

)))
(C.20)

∆Γhid̃jβ d̃∗kγ
=
i

2
δβγ

(
λ

3∑
b=1

3∑
a=1

Y ∗
d,abZ

D,∗
j3+aZ

D
kb+λ

∗
3∑
b=1

ZD,∗jb

3∑
a=1

Yd,abZ
D
k3+a

)(
vsZ

H
i2 +vuZ

H
i3

)
(C.21)

∆Γhiẽj ẽ∗k =
i

2

(
λ

3∑
b=1

3∑
a=1

Y ∗
e,abZ

E,∗
j3+aZ

E
kb + λ∗

3∑
b=1

ZE,∗jb

3∑
a=1

Ye,abZ
E
k3+a

)(
vsZ

H
i2 + vuZ

H
i3

)
(C.22)

∆Γhiũjβ ũ∗
kγ

=
i

2
δβγ

(
λ

3∑
b=1

3∑
a=1

Y ∗
u,abZ

U,∗
j3+aZ

U
kb + λ∗

3∑
b=1

ZU,∗jb

3∑
a=1

Yu,abZ
U
k3+a

)(
vdZ

H
i3 + vsZ

H
i1

)
(C.23)

∆ΓH−
i ũjβ d̃

∗
kγ

= i
1√
2
vsδβγ

(
λZ+,∗

i1

3∑
b=1

3∑
a=1

Y ∗
u,abZ

U,∗
j3+aZ

D
kb + λ∗Z+,∗

i2

3∑
b=1

ZU,∗jb

3∑
a=1

Yd,abZ
D
k3+a

)
(C.24)

∆ΓH−
i ν̃j ẽ

∗
k

= i
1√
2
vsλ

∗Z+,∗
i2

3∑
b=1

ZV,∗jb

3∑
a=1

Ye,abZ
E
k3+a (C.25)

∆Γd̃iαH+
j ũ

∗
kγ

= i
1√
2
vsδαγ

(
λ

3∑
b=1

3∑
a=1

Y ∗
d,abZ

D,∗
i3+aZ

U
kbZ

+
j2 + λ∗

3∑
b=1

ZD,∗ib

3∑
a=1

Yu,abZ
U
k3+aZ

+
j1

)
(C.26)
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∆ΓẽiH+
j ν̃

∗
k

= i
1√
2
vsλ

3∑
b=1

3∑
a=1

Y ∗
e,abZ

E,∗
i3+aZ

V
kbZ

+
j2 (C.27)

C.3 Four scalar interactions

∆ΓA0
iA

0
jA

0
kA

0
l

= −i|λ|2× (C.28)(
ZAi3

(
ZAj1

(
ZAk1Z

A
l3 + ZAk3Z

A
l1

)
+ ZAj2

(
ZAk2Z

A
l3 + ZAk3Z

A
l2

)
+ ZAj3

(
ZAk1Z

A
l1 + ZAk2Z

A
l2

))
+ ZAi2

(
ZAj1

(
ZAk1Z

A
l2 + ZAk2Z

A
l1

)
+ ZAj2

(
ZAk1Z

A
l1 + ZAk3Z

A
l3

)
+ ZAj3

(
ZAk2Z

A
l3 + ZAk3Z

A
l2

))
+ ZAi1

(
ZAj1

(
ZAk2Z

A
l2 + ZAk3Z

A
l3

)
+ ZAj2

(
ZAk1Z

A
l2 + ZAk2Z

A
l1

)
+ ZAj3

(
ZAk1Z

A
l3+ZAk3Z

A
l1

)))
∆ΓA0

iA
0
jhkhl

= −i|λ|2
(
ZAi3Z

A
j3

(
ZHk1Z

H
l1 + ZHk2Z

H
l2

)
+ ZAi2Z

A
j2

(
ZHk1Z

H
l1 + ZHk3Z

H
l3

)
+ ZAi1Z

A
j1

(
ZHk2Z

H
l2 + ZHk3Z

H
l3

))
(C.29)

∆ΓA0
iA

0
jH

−
k H

+
l

= − i
2
|λ|2

(
Z+,∗
k1

(
2ZAi3Z

A
j3Z

+
l1 +

(
ZAi1Z

A
j2 + ZAi2Z

A
j1

)
Z+
l2

)
+ Z+,∗

k2

(
2ZAi3Z

A
j3Z

+
l2 + ZAi1Z

A
j2Z

+
l1 + ZAi2Z

A
j1Z

+
l1

))
(C.30)

∆ΓA0
iA

0
j d̃kγ d̃

∗
lδ

= − i
2
δγδ

(
λ

3∑
b=1

3∑
a=1

Y ∗
d,abZ

D,∗
k3+aZ

D
lb + λ∗

3∑
b=1

ZD,∗kb

3∑
a=1

Yd,abZ
D
l3+a

)(
ZAi2Z

A
j3 + ZAi3Z

A
j2

)
(C.31)

∆ΓA0
iA

0
j ẽk ẽ

∗
l

= − i
2

(
λ

3∑
b=1

3∑
a=1

Y ∗
e,abZ

E,∗
k3+aZ

E
lb + λ∗

3∑
b=1

ZE,∗kb

3∑
a=1

Ye,abZ
E
l3+a

)(
ZAi2Z

A
j3 + ZAi3Z

A
j2

)
(C.32)

∆ΓA0
iA

0
j ũkγ ũ

∗
lδ

= − i
2
δγδ

(
λ

3∑
b=1

3∑
a=1

Y ∗
u,abZ

U,∗
k3+aZ

U
lb + λ∗

3∑
b=1

ZU,∗kb

3∑
a=1

Yu,abZ
U
l3+a

)(
ZAi1Z

A
j3 + ZAi3Z

A
j1

)
(C.33)

∆ΓA0
ihjH

−
k H

+
l

= −1

2
|λ|2

(
ZAi1Z

H
j2 + ZAi2Z

H
j1

)(
− Z+,∗

k1 Z+
l2 + Z+,∗

k2 Z+
l1

)
(C.34)

∆ΓA0
iH

−
j ũkγ d̃

∗
lδ

=
1√
2
δγδ

(
− λZ+,∗

j1

3∑
b=1

3∑
a=1

Y ∗
u,abZ

U,∗
k3+aZ

D
lb + λ∗Z+,∗

j2

3∑
b=1

ZU,∗kb

3∑
a=1

Yd,abZ
D
l3+a

)
ZAi3

(C.35)

∆ΓA0
iH

−
j ν̃k ẽ

∗
l

=
1√
2
λ∗Z+,∗

j2

3∑
b=1

ZV,∗kb

3∑
a=1

Ye,abZ
E
l3+aZ

A
i3 (C.36)

∆ΓA0
i d̃jβH

+
k ũ

∗
lδ

=
1√
2
δβδZ

A
i3

(
− λ

3∑
b=1

3∑
a=1

Y ∗
d,abZ

D,∗
j3+aZ

U
lbZ

+
k2 + λ∗

3∑
b=1

ZD,∗jb

3∑
a=1

Yu,abZ
U
l3+aZ

+
k1

)
(C.37)

∆ΓA0
i ẽjH

+
k ν̃

∗
l

= − 1√
2
λ

3∑
b=1

3∑
a=1

Y ∗
e,abZ

E,∗
j3+aZ

V
lbZ

A
i3Z

+
k2 (C.38)
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∆Γhihjhkhl = −i|λ|2×(
ZHi3

(
ZHj1

(
ZHk1Z

H
l3 + ZHk3Z

H
l1

)
+ ZHj2

(
ZHk2Z

H
l3 + ZHk3Z

H
l2

)
+ ZHj3

(
ZHk1Z

H
l1 + ZHk2Z

H
l2

))
+ ZHi2

(
ZHj1

(
ZHk1Z

H
l2 +ZHk2Z

H
l1

)
+ZHj2

(
ZHk1Z

H
l1 +ZHk3Z

H
l3

)
+ZHj3

(
ZHk2Z

H
l3 +ZHk3Z

H
l2

))
+ ZHi1

(
ZHj1

(
ZHk2Z

H
l2 +ZHk3Z

H
l3

)
+ZHj2

(
ZHk1Z

H
l2 +ZHk2Z

H
l1

)
+ZHj3

(
ZHk1Z

H
l3 +ZHk3Z

H
l1

)))
(C.39)

∆ΓhihjH−
k H

+
l

=
i

2
|λ|2

(
Z+,∗
k1

(
− 2ZHi3Z

H
j3Z

+
l1 +

(
ZHi1Z

H
j2 + ZHi2Z

H
j1

)
Z+
l2

)
+ Z+,∗

k2

(
− 2ZHi3Z

H
j3Z

+
l2 + ZHi1Z

H
j2Z

+
l1 + ZHi2Z

H
j1Z

+
l1

))
(C.40)

∆Γhihj d̃kγ d̃∗lδ
=
i

2
δγδ

(
λ

3∑
b=1

3∑
a=1

Y ∗
d,abZ

D,∗
k3+aZ

D
lb + λ∗

3∑
b=1

ZD,∗kb

3∑
a=1

Yd,abZ
D
l3+a

)(
ZHi2Z

H
j3 + ZHi3Z

H
j2

)
(C.41)

∆Γhihj ẽk ẽ∗l =
i

2

(
λ

3∑
b=1

3∑
a=1

Y ∗
e,abZ

E,∗
k3+aZ

E
lb + λ∗

3∑
b=1

ZE,∗kb

3∑
a=1

Ye,abZ
E
l3+a

)(
ZHi2Z

H
j3 + ZHi3Z

H
j2

)
(C.42)

∆Γhihj ũkγ ũ∗
lδ

=
i

2
δγδ

(
λ

3∑
b=1

3∑
a=1

Y ∗
u,abZ

U,∗
k3+aZ

U
lb + λ∗

3∑
b=1

ZU,∗kb

3∑
a=1

Yu,abZ
U
l3+a

)(
ZHi1Z

H
j3 + ZHi3Z

H
j1

)
(C.43)

∆ΓhiH−
j ũkγ d̃

∗
lδ

= i
1√
2
δγδ

(
λZ+,∗

j1

3∑
b=1

3∑
a=1

Y ∗
u,abZ

U,∗
k3+aZ

D
lb + λ∗Z+,∗

j2

3∑
b=1

ZU,∗kb

3∑
a=1

Yd,abZ
D
l3+a

)
ZHi3

(C.44)

∆ΓhiH−
j ν̃k ẽ

∗
l

= i
1√
2
λ∗Z+,∗

j2

3∑
b=1

ZV,∗kb

3∑
a=1

Ye,abZ
E
l3+aZ

H
i3 (C.45)

∆Γhid̃jβH+
k ũ

∗
lδ

= i
1√
2
δβδZ

H
i3

(
λ

3∑
b=1

3∑
a=1

Y ∗
d,abZ

D,∗
j3+aZ

U
lbZ

+
k2 + λ∗

3∑
b=1

ZD,∗jb

3∑
a=1

Yu,abZ
U
l3+aZ

+
k1

)
(C.46)

∆ΓhiẽjH+
k ν̃

∗
l

= i
1√
2
λ

3∑
b=1

3∑
a=1

Y ∗
e,abZ

E,∗
j3+aZ

V
lbZ

H
i3Z

+
k2 (C.47)

∆ΓH−
i H

−
j H

+
k H

+
l

= −i|λ|2
(
Z+,∗
i1 Z+,∗

j2 + Z+,∗
i2 Z+,∗

j1

)(
Z+
k1Z

+
l2 + Z+

k2Z
+
l1

)
(C.48)

D The Higgs sector of the DiracNMSSM at the loop level

We give here some details of the calculation which are carried out by a combination of the

public tools SARAH and SPheno.

To calculate the Higgs mass at the one-loop level, first the one-loop corrections to the

tadpoles equations are needed. These are a sum of loops involving massive vector bosons

and ghosts, standard model fermions, SUSY fermions, sfermions and Higgs fields:

δΘ
(1)
i = δΘ

(1),V
i + δΘ

(1),f
i + δΘ

(1),f̃
i + δΘ

(1),χ
i + δΘ

(1),φ
i . (D.1)
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The explicit expression for all contributions read

δΘ
(1),V
i = + 2A0

(
m2
Z

)
Γȟi,Z,Z +A0

(
m2
η−

)
Γȟi,η̄−,η− +A0

(
m2
η+

)
Γȟi,η̄+,η+

+A0

(
m2
ηZ

)
Γȟi,η̄Z ,ηZ + 4A0

(
m2
W−

)
Γȟi,W+,W− (D.2)

δΘ
(1),φ
i =−

2∑
a=1

A0

(
m2
H−
a

)
Γȟi,H+

a ,H
−
a
− 1

2

4∑
a=1

A0

(
m2
A0
a

)
Γȟi,A0

a,A
0
a
− 1

2

4∑
a=1

A0

(
m2
ha

)
Γȟi,ha,ha

(D.3)

δΘ
(1),χ
i = + 2

2∑
a=1

A0

(
m2
χ̃−
a

)
mχ̃−

a

(
ΓL
ȟi,χ̃

+
a ,χ̃

−
a

+ ΓR
ȟi,χ̃

+
a ,χ̃

−
a

)
+

6∑
a=1

A0

(
m2
χ̃0
a

)
mχ̃0

a

(
ΓL
ȟi,χ̃0

a,χ̃
0
a

+ ΓR
ȟi,χ̃0

a,χ̃
0
a

)
(D.4)

δΘ
(1),f̃
i =−

3∑
a=1

A0

(
m2
ν̃a

)
Γȟi,ν̃∗a ,ν̃a − 3

6∑
a=1

A0

(
m2
d̃a

)
Γȟi,d̃∗a,d̃a

−
6∑

a=1

A0

(
m2
ẽa

)
Γȟi,ẽ∗a,ẽa

− 3

6∑
a=1

A0

(
m2
ũa

)
Γȟi,ũ∗a,ũa (D.5)

δΘ
(1),f
i = + 6

3∑
a=1

A0

(
m2
da

)
mda

(
ΓL
ȟi,d̄a,da

+ ΓR
ȟi,d̄a,da

)
+ 2

3∑
a=1

A0

(
m2
ea

)
mea

(
ΓL
ȟi,ēa,ea

+ ΓR
ȟi,ēa,ea

)
+ 6

3∑
a=1

A0

(
m2
ua

)
mua

(
ΓL
ȟi,ūa,ua

+ ΓR
ȟi,ūa,ua

)
(D.6)

with δΘ
(1)
1 =δΘ

(1)
d , δΘ

(1)
2 =δΘ

(1)
u , δΘ

(1)
3 =δΘ

(1)
s , and δΘ

(1)
4 =δΘ

(1)
s̄ , and ȟ=(φd, φu, φs, φs̄)

T .

Here, chiral vertices are parametrized by ΓLPL + ΓRPR with the projection operators

PL,R and non-chiral vertices by Γ. The subscripts denote the involved particles. All

necessary vertices and mass matrices for the DiracNMSSM are given in appendix B–C.

Note, the rotation matrix corresponding to the external scalar has to be replaced by the

identity matrix in these calculations. The finite part of the Passarino-Veltman integral A0

is given by

A0(m2) = m2

(
1− ln

m2

Q2

)
(D.7)

with the renormalisation scale Q which is chosen to be the average of the stop masses.

The one-loop corrections to the tadpoles are applied to find the new values of µ, bµ, ts, ts̄
which the vacuum conditions

Θi + δΘ
(1)
i = 0 , i = d, u, s, s̄ . (D.8)

The second step is to calculate the self-energy matrix of the CP even Higgs

Πh
i,j(p

2) = Πh,V
i,j (p2) + Πh,φ

i,j (p2) + Πh,V φ
i,j (p2) + Πh,f̃

i,j (p2) + Πh,f
i,j (p2) + Πh,χ

i,j (p2) . (D.9)
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The corrections stemming from vector bosons and ghosts are given

Πh,V
i,j (p2) = +2B0

(
p2,m2

Z ,m
2
Z

)
Γ∗
ȟj ,Z,Z

Γȟi,Z,Z + 4

+B0

(
p2,m2

W− ,m
2
W−

)
Γ∗
ȟj ,W+,W−Γȟi,W+,W−

−B0

(
p2,m2

η− ,m
2
η−

)
Γȟi,η̄−,η−Γȟj ,η̄−,η− −B0

(
p2,m2

η+ ,m
2
η+

)
Γȟi,η̄+,η+Γȟj ,η̄+,η+

−B0

(
p2,m2

ηZ ,m
2
ηZ

)
Γȟi,η̄Z ,ηZΓȟj ,η̄Z ,ηZ

+ 2A0

(
m2
Z

)
Γȟi,ȟj ,Z,Z + 4A0

(
m2
W−

)
Γȟi,ȟj ,W+,W− . (D.10)

The corrections from Higgs scalars in the loops read

Πh,φ
i,j (p2) = −

2∑
a=1

A0

(
m2
H−
a

)
Γȟi,ȟj ,H+

a ,H
−
a

+

2∑
a=1

2∑
b=1

B0

(
p2,m2

H−
a
,m2

H−
b

)
Γ∗
ȟj ,H

+
a ,H

−
b

Γȟi,H+
a ,H

−
b

− 1

2

4∑
a=1

A0

(
m2
A0
a

)
Γȟi,ȟj ,A0

a,A
0
a
− 1

2

4∑
a=1

A0

(
m2
ha

)
Γȟi,ȟj ,ha,ha

+
1

2

4∑
a=1

4∑
b=1

B0

(
p2,m2

A0
a
,m2

A0
b

)
Γ∗
ȟj ,A0

a,A
0
b
Γȟi,A0

a,A
0
b

+

4∑
a=1

4∑
b=1

B0

(
p2,m2

ha ,m
2
A0
b

)
Γ∗
ȟj ,ha,A0

b
Γȟi,ha,A0

b

+
1

2

4∑
a=1

4∑
b=1

B0

(
p2,m2

ha ,m
2
hb

)
Γ∗
ȟj ,ha,hb

Γȟi,ha,hb . (D.11)

The mixed contributions involving scalars and vector bosons are given by

Πh,V φ
i,j (p2) = +2

2∑
b=1

Γ∗
ȟj ,W+,H−

b

Γȟi,W+,H−
b
F0

(
p2,m2

H−
b

,m2
W−

)
+

4∑
b=1

Γ∗
ȟj ,Z,A0

b
Γȟi,Z,A0

b
F0

(
p2,m2

A0
b
,m2

Z

)
. (D.12)

The corrections due to charginos and neutralinos read

Πh,χ
i,j (p2) = −2

2∑
a=1

mχ̃−
a

2∑
b=1

B0

(
p2,m2

χ̃−
a
,m2

χ̃−
b

)
mχ̃−

b

(
ΓL∗
ȟj ,χ̃

+
a ,χ̃

−
b

ΓR
ȟi,χ̃

+
a ,χ̃

−
b

+ ΓR∗
ȟj ,χ̃

+
a ,χ̃

−
b

ΓL
ȟi,χ̃

+
a ,χ̃

−
b

)
+

2∑
a=1

2∑
b=1

G0

(
p2,m2

χ̃−
a
,m2

χ̃−
b

)(
ΓL∗
ȟj ,χ̃

+
a ,χ̃

−
b

ΓL
ȟi,χ̃

+
a ,χ̃

−
b

+ ΓR∗
ȟj ,χ̃

+
a ,χ̃

−
b

ΓR
ȟi,χ̃

+
a ,χ̃

−
b

)
−

6∑
a=1

mχ̃0
a

6∑
b=1

B0

(
p2,m2

χ̃0
a
,m2

χ̃0
b

)
mχ̃0

b

(
ΓL∗
ȟj ,χ̃0

a,χ̃
0
b
ΓR
ȟi,χ̃0

a,χ̃
0
b

+ ΓR∗
ȟj ,χ̃0

a,χ̃
0
b
ΓL
ȟi,χ̃0

a,χ̃
0
b

)
+

1

2

6∑
a=1

6∑
b=1

G0

(
p2,m2

χ̃0
a
,m2

χ̃0
b

)(
ΓL∗
ȟj ,χ̃0

a,χ̃
0
b
ΓL
ȟi,χ̃0

a,χ̃
0
b

+ ΓR∗
ȟj ,χ̃0

a,χ̃
0
b
ΓR
ȟi,χ̃0

a,χ̃
0
b

)
. (D.13)
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The corrections due to Sfermions are

Πh,f̃
i,j (p2) = −

3∑
a=1

A0

(
m2
ν̃a

)
Γȟi,ȟj ,ν̃∗a ,ν̃a +

3∑
a=1

3∑
b=1

B0

(
p2,m2

ν̃a ,m
2
ν̃b

)
Γ∗
ȟj ,ν̃∗a ,ν̃b

Γȟi,ν̃∗a ,ν̃b

− 3
6∑

a=1

A0

(
m2
d̃a

)
Γȟi,ȟj ,d̃∗a,d̃a

−
6∑

a=1

A0

(
m2
ẽa

)
Γȟi,ȟj ,ẽ∗a,ẽa

− 3
6∑

a=1

A0

(
m2
ũa

)
Γȟi,ȟj ,ũ∗a,ũa + 3

6∑
a=1

6∑
b=1

B0

(
p2,m2

d̃a
,m2

d̃b

)
Γ∗
ȟj ,d̃∗a,d̃b

Γȟi,d̃∗a,d̃b

+
6∑

a=1

6∑
b=1

B0

(
p2,m2

ẽa ,m
2
ẽb

)
Γ∗
ȟj ,ẽ∗a,ẽb

Γȟi,ẽ∗a,ẽb

+ 3

6∑
a=1

6∑
b=1

B0

(
p2,m2

ũa ,m
2
ũb

)
Γ∗
ȟj ,ũ∗a,ũb

Γȟi,ũ∗a,ũb . (D.14)

And those stemming from SM fermions are

Πh,f
i,j (p2) = −6

3∑
a=1

mda

3∑
b=1

B0

(
p2,m2

da ,m
2
db

)
mdb

(
ΓL∗
ȟj ,d̄a,db

ΓR
ȟi,d̄a,db

+ ΓR∗
ȟj ,d̄a,db

ΓL
ȟi,d̄a,db

)
+ 3

3∑
a=1

3∑
b=1

G0

(
p2,m2

da ,m
2
db

)(
ΓL∗
ȟj ,d̄a,db

ΓL
ȟi,d̄a,db

+ ΓR∗
ȟj ,d̄a,db

ΓR
ȟi,d̄a,db

)
− 2

3∑
a=1

mea

3∑
b=1

B0

(
p2,m2

ea ,m
2
eb

)
meb

(
ΓL∗
ȟj ,ēa,eb

ΓR
ȟi,ēa,eb

+ ΓR∗
ȟj ,ēa,eb

ΓL
ȟi,ēa,eb

)
+

3∑
a=1

3∑
b=1

G0

(
p2,m2

ea ,m
2
eb

)(
ΓL∗
ȟj ,ēa,eb

ΓL
ȟi,ēa,eb

+ ΓR∗
ȟj ,ēa,eb

ΓR
ȟi,ēa,eb

)
− 6

3∑
a=1

mua

3∑
b=1

B0

(
p2,m2

ua ,m
2
ub

)
mub

(
ΓL∗
ȟj ,ūa,ub

ΓR
ȟi,ūa,ub

+ ΓR∗
ȟj ,ūa,ub

ΓL
ȟi,ūa,ub

)
+ 3

3∑
a=1

3∑
b=1

G0

(
p2,m2

ua ,m
2
ub

)(
ΓL∗
ȟj ,ūa,ub

ΓL
ȟi,ūa,ub

+ ΓR∗
ȟj ,ūa,ub

ΓR
ȟi,ūa,ub

)
. (D.15)

The Passarino-Veltman integral B0 can be expressed by

B0(p,m1,m2) = − ln

(
p2

Q2

)
− fB(x+)− fB(x−) , (D.16)

with fB(x) = ln(1−x)−x ln(1−x−1)−1, x± =
s±
√
s2−4p2(m2

1−iε)
2p2 , and s = p2−m2

2 +m2
1.

All appearing integrals can be expressed in terms of A0 and B0

B1(p,m1,m2) =
1

2p2

(
A0(m2)−A0(m1) + (p2 +m2

1 −m2
2)B0(p,m1,m2)

)
(D.17)

B22(p,m1,m2) =
1

6

(1

2

(
A0(m1) +A0(m2)

)
+

(
m2

1 +m2
2 −

1

2
p2

)
B0(p,m1,m2)

+
m2

2 −m2
1

2p2

[
A0(m2)−A0(m1)− (m2

2 −m2
1)B0(p,m1,m2)

]
+m2

1 +m2
2 −

1

3
p2
)

(D.18)
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F0(p,m1,m2) = A0(m1)− 2A0(m2)− (2p2 + 2m2
1 −m2

2)B0(p,m1,m2) , (D.19)

G0(p,m1,m2) = (p2 −m2
1 −m2

2)B0(p,m1,m2)−A0(m1)−A0(m2) . (D.20)

In our numerical analysis the one-loop scalar Higgs masses are then calculated by

taking the real part of the poles of the corresponding propagator matrices

Det
[
p2
i1−m

2,h
1L (p2)

]
= 0 , (D.21)

where

m2,h
1L (p2) = m̃2,h

T −Πhh(p2) . (D.22)

Here, m̃2,h
T is the tree-level mass matrix from eq. (2.19) where the parameters obtained

from the one-loop tadpole equations are inserted. Equation (D.21) has to be solved for

each eigenvalue p2 = m2
i . The same procedure is also applied for the pseudo scalar Higgs

bosons.

Dominant two-loop corrections. In addition to the full correction at one-loop we

have also added the dominant two-loop corrections due to stops known from the MSSM

presented in [76–79]. Because of the presence of these corrections, the renormalisation

conditions eq. (D.8) are modified to

Θi + δΘ
(1)
i + δΘ

(2)
i = 0 , i = d, u (D.23)

Θi + δΘ
(1)
i = 0 , i = s, s̄ (D.24)

and the 2-loop self-energy of the CP even Higgs takes the form

Π(2L) =

(
Π(2L),MSSM 0

0 0

)
. (D.25)

Here, 0 is a 2 × 2 matrix carrying only 0’s, and Π(2L),MSSM are the two-loop MSSM

self-energy contributions to the Higgs.
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