977 research outputs found
Recommended from our members
Assimilation of sea-ice concentration in a global climate model — physical and statistical aspects
We investigate the initialisation of Northern Hemisphere sea ice in the global climate model ECHAM5/MPI-OM by assimilating sea-ice concentration data. The analysis updates for concentration are given by Newtonian relaxation, and we discuss different ways of specifying the analysis updates for mean thickness. Because the conservation of mean ice thickness or actual ice thickness in the analysis updates leads to poor assimilation performance, we introduce a proportional dependence between concentration and mean thickness analysis updates. Assimilation with these proportional mean-thickness analysis updates leads to good assimilation performance for sea-ice concentration and thickness, both in identical-twin experiments and when assimilating sea-ice observations. The simulation of other Arctic surface fields in the coupled model is, however, not significantly improved by the assimilation. To understand the physical aspects of assimilation errors, we construct a simple prognostic model of the sea-ice thermodynamics, and analyse its response to the assimilation. We find that an adjustment of mean ice thickness in the analysis update is essential to arrive at plausible state estimates. To understand the statistical aspects of assimilation errors, we study the model background error covariance between ice concentration and ice thickness. We find that the spatial structure of covariances is best represented by the proportional mean-thickness analysis updates. Both physical and statistical evidence supports the experimental finding that assimilation with proportional mean-thickness updates outperforms the other two methods considered. The method described here is very simple to implement, and gives results that are sufficiently good to be used for initialising sea ice in a global climate model for seasonal to decadal predictions
Orbifold projection in supersymmetric QCD at N_f\leq N_c
Supersymmetric orbifold projection of N=1 SQCD with relatively small number
of flavors (not larger than the number of colors) is considered. The purpose is
to check whether orbifolding commutes with the infrared limit. On the one hand,
one considers the orbifold projection of SQCD and obtains the low-energy
description of the resulting theory. On the other hand, one starts with the
low-energy effective theory of the original SQCD, and only then perfoms
orbifolding. It is shown that at finite N_c the two low-energy theories
obtained in these ways are different. However, in the case of stabilized
run-away vacuum these two theories are shown to coincide in the large N_c
limit. In the case of quantum modified moduli space, topological solitons
carrying baryonic charges are present in the orbifolded low-energy theory.
These solitons may restore the correspondence between the two theories provided
that the soliton mass tends to zero in the large N_c limit.Comment: 10 pages; misprint corrected, reference adde
First in-beam γ -ray study of the level structure of neutron-rich S 39
R. Chapman et al. ; 8 págs.; 6 figs.; 1 tab.The neutron-rich S39 nucleus has been studied using binary grazing reactions produced by the interaction of a 215-MeV beam of S36 ions with a thin Pb208 target. The magnetic spectrometer, PRISMA, and the γ-ray array, CLARA, were used in the measurements. Gamma-ray transitions of the following energies were observed: 339, 398, 466, 705, 1517, 1656, and 1724 keV. Five of the observed transitions have been tentatively assigned to the decay of excited states with spins up to (11/2-). The results of a state-of-the-art shell-model calculation of the level scheme of S39 using the SDPF-U effective interaction are also presented. The systematic behavior of the excitation energy of the first 11/2- states in the odd-A isotopes of sulfur and argon is discussed in relation to the excitation energy of the first excited 2+ states of the adjacent even-A isotopes. The states of S39 that have the components in their wave functions corresponding to three neutrons in the 1f7/2 orbital outside the N=20 core have also been discussed within the context of the 0 ω shell-model calculations presented here. ©2016 American Physical SocietyThis work was supported in part by the EPSRC (UK)
and by the European Union under Contract No. RII3-CT-
2004-506065. Five of us (D.O., M.B., A.H., K.K., and A.P.)
acknowledge financial support from the EPSRC. Z.M.W.
acknowledges support from ORSAS and from the University
of the West of Scotland. A.N.D. acknowledges support from
the STFC. A.J. acknowledges financial support from the
Spanish Ministerio de Ciencia e Innovación under Contracts
No. FPA2007-66069 and No. FPA2009-13377-C02-02. Zs.D.
acknowledges financial support from OTKA under Project
No. K100835. S.S. acknowledges support from the Croatian
Science Foundation under Project No. 7194. The contribution
of the accelerator and target-fabrication staff at the INFN
Legnaro National Laboratory is gratefully acknowledged.Peer Reviewe
Four-quasiparticle alignments in 66Ge
13 págs.; 7 figs.; 1 tab. ; PACS number(s): 23.20.Lv, 21.10.Re, 25.70.Hi, 27.50.1eThe neutron-deficient nucleus 66Ge was populated at high spin in two experiments using the reaction 40Ca(32S, α2p) at beam energies of 105 and 95 MeV. In the first experiment, a self-supporting 40Ca target was used, while a gold-backed target of similar thickness was used in the second experiment, γ rays were detected with the EUROBALL array, combined with the charged-particle detector array EUCLIDES and the Neutron Wall. The level scheme of 66Ge was extended up to E ≈ 18 MeV and Iπ = (23-). Above angular momentum 10+, we found two sequences, connected by energetically staggered ΔI = 1 M 1 transitions. The total Routhian surface calculations describe 66Ge at lower spins as a γ-soft nucleus having a moderate deformation of β2 ≈ 0.23, while a triaxial deformation is predicted for the band structures above Iπ = 10+. To our knowledge, this is the first observation of staggered Ml transitions in a deformed four-quasiparticle π(g9/2 2) ν(g9/2 2) structure. ©2003 American Physical SocietyThis work was supported by BMBF 06 GO¨ 951 and
TMR/LSF Contract No. HPRI-CT-1999-00078. The authors
are indebted to the crew of the VIVITRON accelerator and
the EUROBALL facility at IReS for their dedicated efforts
and cooperation.Peer Reviewe
The first quadrupole excitations in spherical nuclei and nuclear pairing
Excitation energies and transition probabilities of the first 2+ excitations
in even lead, tin and nickel isotopes are calculated within the self-consistent
Theory of Finite Fermi Systems based on the Energy Density Functional by Fayans
et al. A reasonable agreement with available experimental data is obtained. The
effect of the density dependence of the effective pairing interaction is
analyzed in detail by comparing results obtained with volume and surface
pairing. The effect is found to be noticeable, especially for the 2+ energies
which are systematically higher at 200-300 keV for the volume paring as
compared with the surface pairing case, the latter being in a better agreement
with the data.Comment: Presented at International Conference on Nuclear Structure and
Related Topics, Dubna, July 2 - 7, 201
Deformation of the N=Z nucleus 76Sr using beta-decay studies
A novel method of deducing the deformation of the N=Z nucleus 76Sr is
presented. It is based on the comparison of the experimental Gamow-Teller
strength distribution B(GT) from its beta decay with the results of QRPA
calculations. This method confirms previous indications of the strong prolate
deformation of this nucleus in a totally independent way. The measurement has
been carried out with a large Total Absorption gamma Spectrometer, "Lucrecia",
newly installed at CERN-ISOLDE.Comment: Accepted in Phys. Rev. Letter
- …
