Supersymmetric orbifold projection of N=1 SQCD with relatively small number
of flavors (not larger than the number of colors) is considered. The purpose is
to check whether orbifolding commutes with the infrared limit. On the one hand,
one considers the orbifold projection of SQCD and obtains the low-energy
description of the resulting theory. On the other hand, one starts with the
low-energy effective theory of the original SQCD, and only then perfoms
orbifolding. It is shown that at finite N_c the two low-energy theories
obtained in these ways are different. However, in the case of stabilized
run-away vacuum these two theories are shown to coincide in the large N_c
limit. In the case of quantum modified moduli space, topological solitons
carrying baryonic charges are present in the orbifolded low-energy theory.
These solitons may restore the correspondence between the two theories provided
that the soliton mass tends to zero in the large N_c limit.Comment: 10 pages; misprint corrected, reference adde