1,888 research outputs found
EFFECTS OF THE CANADIAN WHEAT BOARD ON THE U.S. WHEAT INDUSTRY
The practices of the Canadian Wheat Board (CWB) are an important issue in U.S. - Canada trade disputes and WTO negotiations. This study analyzes the CWB?s effect on U.S. producers by reviewing findings from previous research and developing models to analyze CWB wheat exports to the United States and the competitive structure of Canadian wheat exports in the world market. U.S. grain producers could benefit from the removal of the CWB as the United States could become more competitive in export markets. However, elimination of the CWB could also result in an increase in Canadian wheat exports to the United States as Canadian producers near the border could sell directly to the United States to take advantage of market opportunities. The net effect is difficult to quantify. The net benefits may be significant in the short run, but reduced significantly in the long run. Similarly, if Canada reforms its wheat board by eliminating trade-distorting subsidies, the United States may increase its exports and Canadian exports to the United States may increase. The net benefits from reforming the CWB could be greater than those from eliminating it. However, the United States could benefit the most from complete elimination of state trading enterprises (STEs), since they have elements distorting trade flows and the United States competes with several STEs in the world wheat market.Canadian Wheat Board, state trading enterprises, price discrimination, wheat exports, Crop Production/Industries, International Relations/Trade,
Emergent non-commutative matter fields from Group Field Theory models of quantum spacetime
We offer a perspective on some recent results obtained in the context of the
group field theory approach to quantum gravity, on top of reviewing them
briefly. These concern a natural mechanism for the emergence of non-commutative
field theories for matter directly from the GFT action, in both 3 and 4
dimensions and in both Riemannian and Lorentzian signatures. As such they
represent an important step, we argue, in bridging the gap between a quantum,
discrete picture of a pre-geometric spacetime and the effective continuum
geometric physics of gravity and matter, using ideas and tools from field
theory and condensed matter analog gravity models, applied directly at the GFT
level.Comment: 13 pages, no figures; uses JPConf style; contribution to the
proceedings of the D.I.C.E. 2008 worksho
Recommended from our members
Improving CRISPR-Cas nuclease specificity using truncated guide RNAs
Galaxies in box: A simulated view of the interstellar medium
We review progress in the development of physically realistic three
dimensional simulated models of the galaxy.We consider the scales from star
forming molecular clouds to the full spiral disc. Models are computed using
hydrodynamic (HD) or magnetohydrodynamic (MHD) equations and may include cosmic
ray or tracer particles. The range of dynamical scales between the full galaxy
structure and the turbulent scales of supernova (SN) explosions and even cloud
collapse to form stars, make it impossible with current computing tools and
resources to resolve all of these in one model. We therefore consider a
hierarchy of models and how they can be related to enhance our understanding of
the complete galaxy.Comment: Chapter in Large Scale Magnetic Fields in the Univers
The M81 Group Dwarf Irregular Galaxy DDO 165. II. Connecting Recent Star Formation with ISM Structures and Kinematics
We compare the stellar populations and complex neutral gas dynamics of the
M81 group dIrr galaxy DDO 165 using data from the HST and the VLA. Paper I
identified two kinematically distinct HI components, multiple localized high
velocity gas features, and eight HI holes and shells (the largest of which
spans ~2.2x1.1 kpc). Using the spatial and temporal information from the
stellar populations in DDO 165, we compare the patterns of star formation over
the past 500 Myr with the HI dynamics. We extract localized star formation
histories within 6 of the 8 HI holes identified in Paper I, as well as 23 other
regions that sample a range of stellar densities and neutral gas properties.
From population synthesis modeling, we derive the energy outputs (from stellar
winds and supernovae) of the stellar populations within these regions over the
last 100 Myr, and compare with refined estimates of the energies required to
create the HI holes. In all cases, we find that "feedback" is energetically
capable of creating the observed structures in the ISM. Numerous regions with
significant energy inputs from feedback lack coherent HI structures but show
prominent localized high velocity gas features; this feedback signature is a
natural product of temporally and spatially distributed star formation. In DDO
165, the extended period of heightened star formation activity (lasting more
than 1 Gyr) is energetically capable of creating the observed holes and high
velocity gas features in the neutral ISM.Comment: The Astrophysical Journal, in press. Full-resolution version
available on request from the first autho
Rapid multi sample DNA amplification using rotary-linear polymerase chain reaction device (PCRDisc)
Multiple sample DNA amplification was done by using a novel rotary-linear motion polymerase chain reaction (PCR) device. A simple compact disc was used to create the stationary sample chambers which are individually temperature controlled. The PCR was performed by shuttling the samples to different temperature zones by using a combined rotary-linear movement of the disc. The device was successfully used to amplify up to 12 samples in less than 30 min with a sample volume of 5 μl. A simple spring loaded heater mechanism was introduced to enable good thermal contact between the samples and the heaters. Each of the heater temperatures are controlled by using a simple proportional–integral–derivative pulse width modulation control system. The results show a good improvement in the amplification rate and duration of the samples. The reagent volume used was reduced to nearly 25% of that used in conventional method
Hot Gas in the Galactic Thick Disk and Halo Near the Draco Cloud
This paper examines the ultraviolet and X-ray photons generated by hot gas in
the Galactic thick disk or halo in the Draco region of the northern hemisphere.
Our analysis uses the intensities from four ions, C IV, O VI, O VII, and O
VIII, sampling temperatures of ~100,000 to ~3,000,000 K. We measured the O VI,
O VII and O VIII intensities from FUSE and XMM-Newton data and subtracted off
the local contributions in order to deduce the thick disk/halo contributions.
These were supplemented with published C IV intensity and O VI column density
measurements. Our estimate of the thermal pressure in the O VI-rich thick
disk/halo gas, p_{th}/k = 6500^{+2500}_{-2600} K cm^{-3}, suggests that the
thick disk/halo is more highly pressurized than would be expected from
theoretical analyses. The ratios of C IV to O VI to O VII to O VIII,
intensities were compared with those predicted by theoretical models. Gas which
was heated to 3,000,000 K then allowed to cool radiatively cannot produce
enough C IV or O VI-generated photons per O VII or O VIII-generated photon.
Producing enough C IV and O VI emission requires heating additional gas to
100,000 < T < 1,000,000 K. However, shock heating, which provides heating
across this temperature range, overproduces O VI relative to the others.
Obtaining the observed mix may require a combination of several processes,
including some amount of shock heating, heat conduction, and mixing, as well as
radiative cooling of very hot gas.Comment: 10 pages, 2 figures. Accepted for publication in the Astrophysical
Journa
Effective action in a higher-spin background
We consider a free massless scalar field coupled to an infinite tower of
background higher-spin gauge fields via minimal coupling to the traceless
conserved currents. The set of Abelian gauge transformations is deformed to the
non-Abelian group of unitary operators acting on the scalar field. The gauge
invariant effective action is computed perturbatively in the external fields.
The structure of the various (divergent or finite) terms is determined. In
particular, the quadratic part of the logarithmically divergent (or of the
finite) term is expressed in terms of curvatures and related to conformal
higher-spin gravity. The generalized higher-spin Weyl anomalies are also
determined. The relation with the theory of interacting higher-spin gauge
fields on anti de Sitter spacetime via the holographic correspondence is
discussed.Comment: 40 pages, Some errors and typos corrected, Version published in JHE
Lineage-based identification of cellular states and expression programs
We present a method, LineageProgram, that uses the developmental lineage relationship of observed gene expression measurements to improve the learning of developmentally relevant cellular states and expression programs. We find that incorporating lineage information allows us to significantly improve both the predictive power and interpretability of expression programs that are derived from expression measurements from in vitro differentiation experiments. The lineage tree of a differentiation experiment is a tree graph whose nodes describe all of the unique expression states in the input expression measurements, and edges describe the experimental perturbations applied to cells. Our method, LineageProgram, is based on a log-linear model with parameters that reflect changes along the lineage tree. Regularization with L1 that based methods controls the parameters in three distinct ways: the number of genes change between two cellular states, the number of unique cellular states, and the number of underlying factors responsible for changes in cell state. The model is estimated with proximal operators to quickly discover a small number of key cell states and gene sets. Comparisons with existing factorization, techniques, such as singular value decomposition and non-negative matrix factorization show that our method provides higher predictive power in held, out tests while inducing sparse and biologically relevant gene sets.National Institutes of Health (U.S.) (P01-NS055923)National Institutes of Health (U.S.) (1-UL1-RR024920
Stress tensor fluctuations in de Sitter spacetime
The two-point function of the stress tensor operator of a quantum field in de
Sitter spacetime is calculated for an arbitrary number of dimensions. We assume
the field to be in the Bunch-Davies vacuum, and formulate our calculation in
terms of de Sitter-invariant bitensors. Explicit results for free minimally
coupled scalar fields with arbitrary mass are provided. We find long-range
stress tensor correlations for sufficiently light fields (with mass m much
smaller than the Hubble scale H), namely, the two-point function decays at
large separations like an inverse power of the physical distance with an
exponent proportional to m^2/H^2. In contrast, we show that for the massless
case it decays at large separations like the fourth power of the physical
distance. There is thus a discontinuity in the massless limit. As a byproduct
of our work, we present a novel and simple geometric interpretation of de
Sitter-invariant bitensors for pairs of points which cannot be connected by
geodesics.Comment: 35 pages, 4 figure
- …
