
Copyedited by: TRJ MANUSCRIPT CATEGORY:

[15:44 1/6/2012 Bioinformatics-bts204.tex] Page: i250 i250–i257

BIOINFORMATICS Vol. 28 ISMB 2012, pages i250–i257
doi:10.1093/bioinformatics/bts204

Lineage-based identification of cellular states
and expression programs
Tatsunori Hashimoto 1, Tommi Jaakkola 1, Richard Sherwood 2, Esteban O. Mazzoni3,
Hynek Wichterle3 and David Gifford 1,∗
1Department of Computer Science and Electrical Engineering, Massachusetts Institute of Technology, Cambridge,
MA 02139
2Brigham Women’s Hospital and Harvard Medical School, Boston, MA 02115 and
3Departments of Pathology, Neurology and Neuroscience, Center for Motor Neuron Biology and Disease and
Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY 10032, USA

ABSTRACT

Summary: We present a method, LineageProgram, that uses the
developmental lineage relationship of observed gene expression
measurements to improve the learning of developmentally relevant
cellular states and expression programs. We find that incorporating
lineage information allows us to significantly improve both the
predictive power and interpretability of expression programs that are
derived from expression measurements from in vitro differentiation
experiments. The lineage tree of a differentiation experiment is a
tree graph whose nodes describe all of the unique expression
states in the input expression measurements, and edges describe
the experimental perturbations applied to cells. Our method,
LineageProgram, is based on a log-linear model with parameters
that reflect changes along the lineage tree. Regularization with
L1 that based methods controls the parameters in three distinct
ways: the number of genes change between two cellular states,
the number of unique cellular states, and the number of underlying
factors responsible for changes in cell state. The model is estimated
with proximal operators to quickly discover a small number of key
cell states and gene sets. Comparisons with existing factorization,
techniques, such as singular value decomposition and non-negative
matrix factorization show that our method provides higher predictive
power in held, out tests while inducing sparse and biologically
relevant gene sets.
Contact: gifford@mit.edu

1 INTRODUCTION
The directed differentiation of embryonic stem (ES) cells into
therapeutically important cell types holds great potential for
regenerative medicine. Identifying stage-specific transcription factor
candidates for the directed differentiation of ES cells has been
difficult, and the computational identification of lineage-associated
transcription factor programs would significantly benefit this
process.

LineageProgram is a new method that identifies the experimental
protocols that result in the same cellular states (Figure 1).
It further decomposes these states into interpretable expression
programs, which we define to be sets of co-varying genes. In
contrast to analyzing the correlation between genes, we define a

∗
To whom correspondence should be addressed.

Fig. 1. Example experimental tree (left) and lineage tree (right).
LineageProgram attempts to identify salient cellular states and covarying
gene sets. Different treatments may result in the same cell state (a1 and a3

after definitive endoderm), while some treatments may have no effect (a3 at
stem cell). Our goal is to merge and prune these types of treatments

program to be sets of genes that co-vary during a differentiation
event. Analysis of developmental expression data has revealed the
existence of expression programs regulating pluripotency across
many cell types [9] as well as lineage-specific programs. We
provide a principled method that discovers both types of programs.
LineageProgram is a log-linear model that uses latent factors
and L1 regularization to obtain sparse parameters, structures and
spectra.

Our primary goal is to estimate expression programs that
are informed and improved by lineage information. To our
knowledge, LineageProgram is the first method to approach
this problem. Prior work in the estimation of developmental
expression programs has used biclustering, factor or topic
decompositions, mixture models and self organizing maps,
all of which simultaneously identify expression programs and
sample clusters, but without incorporating information from the
experimental lineage. As shown in studies of expression time series,
treating dependent expression data as independent observations
can lead to significant loss of information [3]. Separate prior
work has focused on estimating lineage trees and lineage states
in the absence of expression programs. Differentiation has been
modeled both as a time series without branching and de novo tree
estimation.

The remainder of this article presents the LineageProgram
model (Section 2), a comparative analysis of LineageProgram with
other methods on lineage-associated expression data from motor
neuron and pancreatic development (Section 3) and a conclusion
about what we have learned about using lineage information
(Section 4).

© The Author(s) 2012. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

 at M
IT

 L
ibraries on D

ecem
ber 7, 2012

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/9592146?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
gifford@mit.edu
http://bioinformatics.oxfordjournals.org/

Copyedited by: TRJ MANUSCRIPT CATEGORY:

[15:44 1/6/2012 Bioinformatics-bts204.tex] Page: i251 i250–i257

Cellular states and expression programs

2 THE LINEAGEPROGRAM METHOD

Model
LineageProgram operates on N expression measurements of P
genes made on an experimental tree with M nodes, where the
root corresponds to the ES cell state and edges correspond to
experimental interventions. We represent the cell state at a node
i with the probability vector θi , whose kth component is the
probability that gene k is transcribed. The expression measurement
is modeled as proportional to a multinomial draw from θ . Methods
such as GeneProgram [10, 16] have successfully used this discrete-
count model for expression. Our objective function is the continuous
extension of the multinomial likelihood function. We will show
later that this natural continuous extension exists as a discretization
limit and allows us to handle continuous data such as microarray
measurements directly.

A differentiation event is a change in θ , which we represent by
a log-odds change η. The change of a gene k from a parent state i
with vector θi to child state j is written as

θ(j,k) =
θ(i,k) exp(η(j,k))∑

l θ(i,l) exp(η(j,l))
.

This formulation of a log-odds count model has been shown to
outperform analogous Latent Dirichlet Allocation type models [8].

We represent the root stem cell state in the experimental tree as
a log probability vector φ of size P, and the remaining states are
represented as log-odds changes from their parent. For each node
on the cell state tree, we write the expression probability as the sum
of log changes along its path from the ES state and the ES cell
expression φ. Let Pj be the set of nodes along the path from node j
to the ES state. Then the probability of observing gene k at node j
is given as follows:

θ(j,k) =
exp(

∑
i∈Pj

η(i,k) +φk)∑
l exp(

∑
i∈Pj

η(i,l) +φl)
.

We represent the experimental structure as two matrix
multiplications: an M ×M path sum matrix T with Tj,i =1 if
i∈Pj and zero otherwise and an N ×M observation matrix D with
D(t,j) =1, if the tth expression measurement was made at node j and
zero otherwise.

The parameters are represented as two matrices, M ×P parameter
matrix η (which we will regularize to be sparse and low-rank) and
a 1×P ES expression vector φ.

Given the N ×P data matrix X(t,k), which we interpret to be
proportional to counts of an expression event, our log likelihood
takes the form

llh(η)∝
∑
t,k

X(t,k) log

(
exp

(
(DTη)(t,k) +φk

)
∑

l exp
(
(DTη)(t,l) +φl

)
)

.

We design our regularization with three objectives: there should
be few genes changing per differentiation event (L1 penalty on η),
few unique differentiation events (L2 penalty on the rows of η) and
few programs needed to explain the lineage (trace norm penalty on
η). The L1 penalty is the sum of absolute values of η, which induces
η to have entries with zeroes. The L2 penalty is the sum of the row-
norms of η, which induces η to have rows that are all zeroes. Finally,

the trace norm penalty is the sum of the singular values of η, which
induces η to have low rank.

With the regularization and defining the shorthand notation |η|1 =∑
i,j |η(i,j)| and ||ηi||2 = (

∑
j η

2
(i,j))

(1/2), the overall objective f takes

the form

f (η)=−llh(η)+λ1|η|1 +λ2
∑

i

||ηi||2 +λ3||η||TR.

We show that discretizing the data, X , to some precision β, and
taking the limit as β →∞ has the equivalent minima (up to scaling
and the zero set) by using X without discretization. Note that the
gradient of the log-likelihood function takes the form

lim
β→0

∑
t,k

(�Xt,k/β�)

(�Xt,k/β�∑
k ′ �Xt,k ′/β�

− exp
(
(DTη)(t,k) +φk

)
∑

k ′ exp
(
(DTη)(t,k ′) +φk ′

))

→ 1

β

∑
t,k

(Xt,k)

(
Xt,k∑
k ′ Xt,k ′

− exp
(
(DTη)(t,k) +φk

)
∑

k ′ exp
(
(DTη)(t,k ′) +φk ′

)),

which is the continuous extension of llh up to a constant 1
β . The

regularization terms |η|1, ||η||2 and ||η||TR are convex, but not
strictly convex, so the optima of the continuous extension and the
limit can differ up to elements of the zero set. Testing both small
discretization and the continuous extension, we find no difference
in results, but for completeness we use a threshold of 1e−5 to set a
small neighborhood near zero to be part of the zero set.

Finally, we define the concept of an expression program as a set
of basis vectors spanning η. The trace norm regularization implicitly
penalizes the rank of matrix η, and for large λ3, η will have small
rank and can be represented as the linear combination of a few
‘basis’programs. We choose the singular value decomposition of Tη

as our program decomposition. The first k programs have a natural
interpretation as the best rank-k approximation of the unnormalized
log expression parameters.

Inference
The advantage of our method over topic model formulations is the
convexity of our objective f , which guarantees fast convergence to
the global maxima. Our overall inference strategy is to use gradient
descent on the likelihood combined with proximal steps on each
of the regularization terms. To speed convergence, we also use the
accelerated proximal gradient method by.

The proximal gradient method allows us to efficiently optimize
convex functions of the form f = f ∗+g, where f ∗ is convex
differentiable and g is convex and continuous. f is optimized with
a gradient step on f ∗ followed by a proximal operator, which uses
a quadratic approximation of f ∗ to optimize f ∗+g. Given xt , we
generate the next iterate xt+1 with the following update

xt+1 =Proxg,ε

(
xt −ε∇f ∗(xt)

)
Proxg,ε (xt)=argminY ||xt −Y ||/2+εg(Y).

i251

 at M
IT

 L
ibraries on D

ecem
ber 7, 2012

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

http://bioinformatics.oxfordjournals.org/

Copyedited by: TRJ MANUSCRIPT CATEGORY:

[15:44 1/6/2012 Bioinformatics-bts204.tex] Page: i252 i250–i257

T.Hashimoto et al.

(b)(a)

Fig. 2. The goodness of fit as measured by held-out likelihood shows that the optimal model has few of edges and programs

(a) (b)

Fig. 3. Cross-validated mean square errors on the full cell tree shows good predictive performance by LineageProgram

In our case, our log likelihood is concave differentiable, and there
are three convex continuous functions: g1,g2 and g3, corresponding
to each regularization term.

f (η)=−
f ∗︷ ︸︸ ︷

llh(η)+
g1︷ ︸︸ ︷

λ1|η|1 +
g2︷ ︸︸ ︷

λ2
∑

i

||ηi||

+
g3︷ ︸︸ ︷

λ3||η||TR .

The gradient for f ∗ is given by the difference between predicted and
observed counts

∇f ∗(ηj)k =T T
∑

t

(
X(t,k)

−
⎛
⎝∑

t′,l

X(t′,l)

⎞
⎠ exp

(
(DTη)(t,k) +φk

)
∑

l exp
(
(DTη)(t,l) +φl

)).

The proximal operators for g1 and g2 are the soft-threshold operators

Proxg1,ε (η(i,j))=
⎧⎨
⎩

η(i,j) −ελ1 :η(i,j) >ελ1
η(i,j) +ελ1 :η(i,j) <−ελ1
0 : |η(i,j)|<ελ1

i252

 at M
IT

 L
ibraries on D

ecem
ber 7, 2012

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

http://bioinformatics.oxfordjournals.org/

Copyedited by: TRJ MANUSCRIPT CATEGORY:

[15:44 1/6/2012 Bioinformatics-bts204.tex] Page: i253 i250–i257

Cellular states and expression programs

Fig. 4. Murine differentiation tree representing the derivation of 88
pancreatic and 17 motor neuron expression measurements. Each edge is
an experimental treatment and each vertex a experimental state

Proxg2,ε (η(i,k))=
{

η(i,k)(1−ελ2
1

||ηi||2) : ||ηi||2 >ελ2

0 : ||ηi||2 <ελ2
.

For g3, the proximal operator can be written in closed form in terms
of its singular value decomposition (SVD) [14]. Let η=U DVT and
max(D−λ3ε,0) be the SVD and entrywise subtraction followed by
thresholding, then the proximal operator takes the form

Proxg3,ε (η)=U max(D−λ3ε,0)V T .

At each step of the optimizer, we take some xt and step size ε and
produce the next iterate with

xt+1 =Proxg3,ε (Proxg2,ε (Proxg1,ε (xt −ε∇f ∗(xt)))).

The sequential proximal gradient converges for our objective due
to separability. We also make use of the accelerated gradient method
by, which finds a sequence of xt which converges toward the optima,
using an internal variable yt and a magnification of the gradient, at
to increase convergence rates near the mode.

xt+1 =Proxg3,ε (Proxg2,ε (Proxg1,ε (yt −ε∇f ∗(yt))))

at+1 =
(1+

√
4a2

t +1)

2

yt+1 =xt + at −1

at+1
(xt −xt−1).

In the context of a single proximal operator, this produces
the optimal quadratic first-order convergence rate. In our case,
the multiple proximal operators do not provide a guaranteed
convergence rate, but in practice, we find the accelerated gradient
makes convergence significantly faster. An implementation of this
inference method as well as the results of our analysis are available
from our website at http://psrg.csail.mit.edu/resources.html

For the remainder of the article we use a convergence tolerance of
10−5 and hot starts, which allows us to quickly find solutions over
a list of candidate λ1 values by using the optima of one problem to
initialize a new problem with similar regularization penalties. This
allows us to obtain the regularization path over λ1 for the 105 array
experiments below within 10 min on a computer with a Core 2 Duo
e6300 CPU and 2 GB of memory.

Fig. 5. Measureing held-out error in models with and without trace norm
penalty shows that removing trace norm penalty causes large increases in
held-out error for 7 out of 16 held-out sets

Inference with this method is fast enough that we are able to fit
the model across a 50×50×50 grid of all valid λ1,λ2 and λ3, which
we use to set the regularization parameters as described in the next
section.

3 RESULTS
The algorithm was tested on directed differentiation experiments
for murine pancreatic progenitors and motor neurons, as shown in
Figure 4. Both lines were produced using known differentiation
protocols. The pancreatic line has a large number of states, but
relatively few replicates, while the motor neuron line has multiple
replicates per state. The 88 microarray measurements of the
pancreatic line were performed with Illumina bead arrays, while the
17 in the motor neuron line were performed with Affymetrix 430a2
microarrays. We rank-match the Illumina data to the Affymetrix data
in order to reduce the data to the same scale.

The quantile normalization technique is described in further detail
by Irizarry et al (2003).

Cross-validation procedure
We use cross-validation to estimate the regularization parameters λ1,
λ2 and λ3 over the 50×50×50 grid of all nondegenerate values. For
every experimental state with more than one observation, we include
one observation in the training set and include the rest in the held-out
set. We choose to leave out observations per-node rather than over all
observations, since we must leave at least one observation at each
node in order to make a prediction at the node. The performance
of the model is measured in terms of held-out likelihood, which
indicates goodness of fit, and squared error, measures predictive
performance.

Cross-validation results in Figure 2 show the existence of a sharp
drop in predictive power around a dozen edges and programs;
this sharp transition suggests that there exists a necessary level of
regularization for our algorithm to generalize well.

i253

 at M
IT

 L
ibraries on D

ecem
ber 7, 2012

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

http://bioinformatics.oxfordjournals.org/

Copyedited by: TRJ MANUSCRIPT CATEGORY:

[15:44 1/6/2012 Bioinformatics-bts204.tex] Page: i254 i250–i257

T.Hashimoto et al.

(a) (b)

Fig. 6. Gene set enrichment in Gene Ontology (GO) and manually curated developmental gene sets show programs recovered by LineageProgram are
biologically relevant

The optimal regularization parameters discovered by cross-
validation significantly penalize both the number of edges and
rank of the parameter η. At this optimal value, we find that the
estimated cell state tree in Figure 8 is significantly sparser than the
experimental tree. We also found that a strong L1 penalty dominated
the group L2 penalties, resulting in λ1 controlling both structural and
parameter sparsity.

Necessity of trace norm regularization
The trace-norm penalty is a critical part of modeling large branching
factors. The L1 and L2 penalties shrink the changes between nodes
to zero and bring the probabilities at each child-node toward their
common parent. Therefore, the two edge penalties, λ1 and λ2,
control whether leaves differ at all from their parent, rather than how
they differ. In contrast, the trace norm penalty restricts directions in
which the leaves can differ by forcing the leaves to lie within a small
subspace near their parent.

To test the necessity of trace norm regularization, we compared
our model with and without trace-norm regularization. For both
models, we fit the regularization parameters through cross-validation
and compared the mean squared error on a common held-out set
of 16 arrays selected by removing one array from each node with
replicates. Results in Figure 5 indicate that without the trace norm
penalty, 7 of the 16 held-out observations show significant increases
in squared error. All seven of these observations are children of
the highest degree node in Figure 8 suggesting that the trace norm
penalty plays a key role preventing overfitting on highly branching
data.

Methods compared
Our algorithm was compared against three existing classes of
approaches: SVD, non-negative matrix factorization (NMF) and
latent Dirichlet allocation (LDA) on both held-out prediction error
and quantitative program metrics. We were restricted to considering
non-lineage-informed methods since we did not find any lineage
informed methods in the literature.

For each competing method, we tested major variants of the
algorithms and chose to compare only to the best variant. For
SVD, we tried direct decomposition of the data, mean subtraction
[resulting in Principal Component Analysis (PCA)] and mean
subtraction on pancreatic and motor neuron branches; simple mean
subtraction outperformed the others and is shown here. For NMF,
we tested Kullback-Leibler (KL) divergence and square distance
minimization objective proposed by as well as sparse NMF; we use
KL divergence minimization. For LDA, we used the collapsed Gibbs
sampler as well as variational Bayes updates and found the Gibbs
sampler with 20 000 samples to perform best.

Low cross-validation error on branching data
The held-out mean squared prediction error measures the
generalization performance of each of the algorithms. We split the
expression measurements into cross-validation and held-out sets
selecting 16 replicate experiments one from each node with more
than one measurement. The cross-validation set is split into training
and test sets using the procedure described in the the cross-validation
section. The models are fit on the training data and we calculate the
squared error between the predicted values from the model and the
test data.

Training on the full set of motor neuron and pancreatic data
(Figure 3a), we find that overall, LineageProgram has the lowest
mean squared prediction error. On lineages with no branching, we
would expect to see SVD perform best due to its direct minimization
of squared error. We find that on the motor neuron lineage with no
branching, our algorithm performs like SVD. In the worst case of
non-branching data, our algorithm compares favorably to current
factorization methods. Interestingly, LDA degenerates on the motor
neuron held-out sets with behavior consistent on both training
methods and across multiple replications. We find that LDA overfits
on the later stage pancreatic states at the expense of the motor neuron
states, which is consistent with behavior observed in prior work [8].

To rule out the possibility that the low performance of the
competing algorithms was due to the inclusion of two differing array

i254

 at M
IT

 L
ibraries on D

ecem
ber 7, 2012

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

http://bioinformatics.oxfordjournals.org/

Copyedited by: TRJ MANUSCRIPT CATEGORY:

[15:44 1/6/2012 Bioinformatics-bts204.tex] Page: i255 i250–i257

Cellular states and expression programs

Fig. 7. The distribution of average odds change over all programs per gene
shows that LineageProgram produces sparse programs with many genes at
zero and few dominant genes

types in the pancreatic and motor lineages, we re-ran the test, fitting
and evaluating only on the pancreatic lineage (Figure 3b).

The tests on the pancreatic lineage show nearly the same results
for all methods, with all methods, particularly LDA, performing
slightly better. However, the general ordering of the methods remains
the same, and the performance results are due to the inability
of current methods to handle the large branching factors in the
pancreatic lineage rather than the combination of multiple lineages.

Comparison of program quality
Although methods such as SVD can reconstruct expression values
well, these program decompositions are often difficult to interpret
biologically. Therefore, we quantify the quality of the decomposition
in terms of sparsity and biological relevance. First, we would hope
for each program to have several dominant genes in order to produce
candidate genes for further analysis. We measure this objective
by the coefficient distribution of the programs. Second, we want
each program to encode for biologically meaningful sets of genes.
As with prior work [10], we measure Gene Ontology (GO) term
enrichment as a proxy for biological relevance. Finally, we want each
program to map to a unique developmental gene set. We measure
this objective with the proportion of the program explained by the
dominant developmental gene set.

Fewer genes are used to model the lineage
To measure sparsity, we normalize the programs from all methods
to have unit norm and measure the L2 norm of each gene over all
programs. The L2 norm is measure of average change in odds across
programs. If there are a few genes dominating each program, we
would expect to see only a few genes with high L2 norm. Our goal
is to recover interpretable programs, where each program contains
a few key genes with large and unique activations. Our results in
Figure 7 show that LDA and LineageProgram both produce a few
large coefficients and a large number of coefficients within machine
precision of zero. The dominance of few genes in each program

allows us to label each program with a set of representative genes
in Table 8.

Higher biological relevance of extracted programs
To measure the biological relevance of the discovered programs, we
performed GO enrichment analysis using the weighted Kolmogorov
statistic from gene set enrichment analysis. Plotting GO enrichment
across all programs as a function of Benjamini Hochberg corrected
P-values (Figure 6a), we find that LineageProgram achieves
significantly higher GO enrichments when compared to the other
methods. The higher GO enrichment across all P-values suggests
that the programs recovered by LineageProgram more closely match
subtrees of the GO annotation than those recovered by competing
methods. If this were purely a result of chance, we would expect
LineageProgram to outperform the others on a small subset of
P-value cutoffs, rather than across all cutoffs. In combination with
our sparsity results, this suggests that LineageProgram discovers
small sets of biologically relevant genes in each program.

To ensure that GO enrichment is in developmentally relevant
categories, we also test the uniqueness of each program. In an
ideal decomposition, each program would encode a different aspect
of the developmental process. We use six developmental gene
sets found in the literature, including four GO categories (‘stem
cell maintenance’,‘endocrine pancreas differentiation’,‘embryonic
skeletal development’, and ‘anterior posterior development’), as
well as marker genes for motor neurons (Pax6, Mnx1, Isl1, Lhx1
and Lhx3) [13] and pancreas (Prox1, Pdx1, Hb9 and Nkx6-1) [15].
For each program, we measure the proportion of the program’s L2
norm that is accounted by genes in the most activated category.
The results in Figure 6 show that LineageProgram as well as NMF
have programs closesly matching known differentiation programs.
These correspond to the loss of pluripotency; LDA and SVD
were unable to discover programs that could be mapped solely to
pluripotency. Importantly, LineageProgram maintains a relatively
high correspondence to known gene sets across most of its programs,
indicating its ability to encode small, highly specific gene modules
corresponding to both the pancreatic and motor neuron lineages.

Analysis of full lineage data
Finally, we train LineageProgram on the full dataset to estimate
lineage programs and use cross-validation on replicates to estimate
regularization parameters. The resulting tree is sparse, with only two
branching points (Figure 8). The first branching point corresponds
to the split between motor neuron and pancreatic lineages. The other
branching point differentiates a successful Day 6 pre-endoderm
differentiation from a late-stage Sox17 overexpression experiment.

We compared the lineage tree from the model with a manual
annotation produced separately from this project. Taking only
the vertices corresponding to known cellular states, we match
the manual curation almost exactly, successfully reducing all the
branches before the Day 4 preendoderm and only mis-merging the
Day 5 endoderm with the Day 6 posterior foregut. The regularization
and cross-validation have successfully pruned nearly all spurious
branches of the linage tree.

The Sox17 branch in Figure 8 represents a late-stage experiment
aimed at recovering competency in Day 8 endoderm using
Sox17 overexpression. Although the experiment shows significant
expression level differences from the Day 4 pre-endoderm, we have

i255

 at M
IT

 L
ibraries on D

ecem
ber 7, 2012

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

http://bioinformatics.oxfordjournals.org/

Copyedited by: TRJ MANUSCRIPT CATEGORY:

[15:44 1/6/2012 Bioinformatics-bts204.tex] Page: i256 i250–i257

T.Hashimoto et al.

(a) (b)

T D

L
G

N

S
E

P
S

P

G
P

N

P
P

N
G
N

GNo.

Fig. 8. (Top) Estimated lineage tree for motor neuron and pancreatic progenitor; nodes are grouped by cell type and edges are labeled by program involved; color
indicates program type (see table below) (Bottom) Major GO terms and Genes corresponding to developmental programs stars denote Benjamini–Hochberg
corrected P-value of enrichment t-test; ∗P >0.05;∗∗P >0.01

not positively identified this state as a biologically significant cell
state.

Identification of enriched GO terms and genes also show close
correspondence with known biological facts. We correctly identify
all major stages of the motor neuron differentiation process, from
loss of pluripotency and development of positional identity to spinal
motor neuron specification. On the pancreatic branch, we identify
loss of pluripotency, suppression of mesodermal identity and finally
specification of endodermal and pancreatic identity. We include full
summary output of the enriched genes and GOs for each program
in the appendix.

CONCLUSION
We have presented LineageProgram, a log-linear sparse regularized
model and inference algorithm for lineage-associated expression
data that provide strong interpretability with no loss in predictive
power. Existing flat modeling methods were unable to cope with the
large number of leaves that occur at the ends of the differentiation
experiment, and significant statistical power is lost re-estimating the
background cellular expression levels. Our biological metrics also
suggest that flat factorization methods do not extract biologically
meaningful expression programs, and modeling the differences

between each differentiation state is necessary to estimating fine
behaviors occuring during differentiation.

Our analysis of the combined pancreas and motor neuron data
provides a computational analysis of the pancreatic and motor
neuron differentiation pathways that recapitulate known biological
markers and states. The ability of the sparse regularization to
remove spurious branches in the lineage tree suggests the use of this
model to estimate novel cellular states in later-stage differentiation
experiments, where explicit cellular states are less characterized.

Although we have restricted our model to expression-based data,
we hope to extend this framework of L1-regularized branching
models to sequencing data with similar structure. The penalty model
presented here would allow a wide variety of log-convex generative
models to incorporate lineage-associated structure.

Funding: National Institutes of Health [P01-NS055923 and 1-UL1-
RR024920 to D.K.G.].

Conflict of Interest: none declared.

REFERENCES
Akashi,K. et al. (2003) Transcriptional accessibility for genes of multiple tissues and

hematopoietic lineages is hierarchically controlled during early hematopoiesis.
Blood, 101, 383–389.

i256

 at M
IT

 L
ibraries on D

ecem
ber 7, 2012

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

http://bioinformatics.oxfordjournals.org/

Copyedited by: TRJ MANUSCRIPT CATEGORY:

[15:44 1/6/2012 Bioinformatics-bts204.tex] Page: i257 i250–i257

Cellular states and expression programs

Alter,O. et al. (2000) Singular value decomposition for genome-wide expression data
processing and modeling. Proc. Na. Acad. Sci. USA, 97, 10101–10106.

Bar-Joseph,Z. et al. (2004) Analyzing time series gene expression data. Bioinformatics,
20, 2493–2503.

Carmona-Saez,P. et al. (2000) Biclustering of gene expression data by non-smooth
non-negative matrix factorization. BMC Bioinformatics, 7, 78.

Cheng,Y and Church,G.M. (2000) Biclustering of expression data. In Proceedings
/ ... International Conference on Intelligent Systems for Molecular Biology;
ISMB. International Conference on Intelligent Systems for Molecular Biology, 8:
pp. 93–103.

Costa,I. et al. (2007) Gene expression trees in lymphoid development. BMC
Immunology, 8, 25.

Ivan Costa,G. et al. (2008) Inferring differentiation pathways from gene expression.
Bioinformatics, 24, i156–i164.

Eisenstein,J. et al. (2011) Sparse additive generative models of text.
Ferrari,F. et al. (2007) Genomic expression during human myelopoiesis. BMC

Genomics, 8, 264–264.
Georg,K. et al. (2007) Automated discovery of functional generality of human gene

expression programs. PLoS Computational Biology, 3, e148.
Hoyer,P.O. (2004) Non-negative matrix factorization with sparseness constraints. J.

Machine Learn. Res., 5, 1457–1469.
Irizarry,R.A. et al. (2003) Exploration, normalization, and summaries of high density

oligonucleotide array probe level data. Biostatistics, 4, 249.
Jessell,T.M. (2000) Neuronal specification in the spinal cord: inductive signals and

transcriptional codes. Nature Reviews Genetics, 1, 20–29.
Ji,S. and Ye,J. (2009) An accelerated gradient method for trace norm minimization. In

Proceedings of the 26th Annual International Conference on Machine Learning,
ACM, pp. 457–464.

Jørgensen,M.C. et al. (2007) An illustrated review of early pancreas development in
the mouse. Endocrine reviews, 28, 685.

Joung,J.-G. et al. (2006) Identification of regulatory modules by co-clustering latent
variable models: stem cell differentiation. Bioinformatics, 22, 2005–2011.

Lee,D.D. and Seung,H.S. (2001) Algorithms for non-negative matrix factorization.
Advances in neural information processing systems, 13, 788–791.

Martins,A.F.T. et al. (2011) Online learning of structured predictors with multiple
kernels. In Proceedings of the 14th International Conference on Artificial
Intelligence and Statistics.

Mazzoni,E.O. et al. (2011) Embryonic stem cell-based mapping of developmental
transcriptional programs. Nature methods.

Medvedovic,M. et al. (2004) Bayesian mixture model based clustering of replicated
microarray data. Bioinformatics (Oxford, England), 20, 1222–1232.

Nesterov,Y. and Nesterov,I.U.E. (2004) Introductory Lectures on Convex Optimization:
A Basic Course. Applied optimization. Kluwer Academic Publishers, MA, USA.

Niakan,K.K. et al. (2010) Sox17 promotes differentiation in mouse embryonic stem cells
by directly regulating extraembryonic gene expression and indirectly antagonizing
self-renewal. Genes & Development, 24, 312.

Subramanian,A. et al. (2005) Gene set enrichment analysis: a knowledge-based
approach for interpreting genome-wide expression profiles. Proc. Nat. Acad. Sci.
USA, 102, 15545.

Wirth,H. et al. (2011) Expression cartography of human tissues using self organizing
maps. BMC Bioinformatics, 12, 306.

Zagar,L. et al. (2011) Stage prediction of embryonic stem cell differentiation from
genome-wide expression data. Bioinformatics, 27, 2546 –2553.

Zhang,B. et al. (2011) Estimating developmental states of tumors and normal tissues
using a linear time-ordered model. BMC Bioinformatics, 12, 53.

i257

 at M
IT

 L
ibraries on D

ecem
ber 7, 2012

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

http://bioinformatics.oxfordjournals.org/

	Lineage-based identification of cellular statesand expression programs
	1 Introduction
	2 The LineageProgram Method
	3 Results

