49 research outputs found

    SNAPSHOT USA 2020: A second coordinated national camera trap survey of the United States during the COVID-19 pandemic

    Get PDF
    Managing wildlife populations in the face of global change requires regular data on the abundance and distribution of wild animals, but acquiring these over appropriate spatial scales in a sustainable way has proven challenging. Here we present the data from Snapshot USA 2020, a second annual national mammal survey of the USA. This project involved 152 scientists setting camera traps in a standardized protocol at 1485 locations across 103 arrays in 43 states for a total of 52,710 trap-nights of survey effort. Most (58) of these arrays were also sampled during the same months (September and October) in 2019, providing a direct comparison of animal populations in 2 years that includes data from both during and before the COVID-19 pandemic. All data were managed by the eMammal system, with all species identifications checked by at least two reviewers. In total, we recorded 117,415 detections of 78 species of wild mammals, 9236 detections of at least 43 species of birds, 15,851 detections of six domestic animals and 23,825 detections of humans or their vehicles. Spatial differences across arrays explained more variation in the relative abundance than temporal variation across years for all 38 species modeled, although there are examples of significant site-level differences among years for many species. Temporal results show how species allocate their time and can be used to study species interactions, including between humans and wildlife. These data provide a snapshot of the mammal community of the USA for 2020 and will be useful for exploring the drivers of spatial and temporal changes in relative abundance and distribution, and the impacts of species interactions on daily activity patterns. There are no copyright restrictions, and please cite this paper when using these data, or a subset of these data, for publication

    SNAPSHOT USA 2019: a coordinated national camera trap survey of the United States

    Get PDF
    With the accelerating pace of global change, it is imperative that we obtain rapid inventories of the status and distribution of wildlife for ecological inferences and conservation planning. To address this challenge, we launched the SNAPSHOT USA project, a collaborative survey of terrestrial wildlife populations using camera traps across the United States. For our first annual survey, we compiled data across all 50 states during a 14-week period (17 August-24 November of 2019). We sampled wildlife at 1,509 camera trap sites from 110 camera trap arrays covering 12 different ecoregions across four development zones. This effort resulted in 166,036 unique detections of 83 species of mammals and 17 species of birds. All images were processed through the Smithsonian's eMammal camera trap data repository and included an expert review phase to ensure taxonomic accuracy of data, resulting in each picture being reviewed at least twice. The results represent a timely and standardized camera trap survey of the United States. All of the 2019 survey data are made available herein. We are currently repeating surveys in fall 2020, opening up the opportunity to other institutions and cooperators to expand coverage of all the urban-wild gradients and ecophysiographic regions of the country. Future data will be available as the database is updated at eMammal.si.edu/snapshot-usa, as will future data paper submissions. These data will be useful for local and macroecological research including the examination of community assembly, effects of environmental and anthropogenic landscape variables, effects of fragmentation and extinction debt dynamics, as well as species-specific population dynamics and conservation action plans. There are no copyright restrictions; please cite this paper when using the data for publication

    SNAPSHOT USA 2019 : a coordinated national camera trap survey of the United States

    Get PDF
    This article is protected by copyright. All rights reserved.With the accelerating pace of global change, it is imperative that we obtain rapid inventories of the status and distribution of wildlife for ecological inferences and conservation planning. To address this challenge, we launched the SNAPSHOT USA project, a collaborative survey of terrestrial wildlife populations using camera traps across the United States. For our first annual survey, we compiled data across all 50 states during a 14-week period (17 August - 24 November of 2019). We sampled wildlife at 1509 camera trap sites from 110 camera trap arrays covering 12 different ecoregions across four development zones. This effort resulted in 166,036 unique detections of 83 species of mammals and 17 species of birds. All images were processed through the Smithsonian's eMammal camera trap data repository and included an expert review phase to ensure taxonomic accuracy of data, resulting in each picture being reviewed at least twice. The results represent a timely and standardized camera trap survey of the USA. All of the 2019 survey data are made available herein. We are currently repeating surveys in fall 2020, opening up the opportunity to other institutions and cooperators to expand coverage of all the urban-wild gradients and ecophysiographic regions of the country. Future data will be available as the database is updated at eMammal.si.edu/snapshot-usa, as well as future data paper submissions. These data will be useful for local and macroecological research including the examination of community assembly, effects of environmental and anthropogenic landscape variables, effects of fragmentation and extinction debt dynamics, as well as species-specific population dynamics and conservation action plans. There are no copyright restrictions; please cite this paper when using the data for publication.Publisher PDFPeer reviewe

    Mammal responses to global changes in human activity vary by trophic group and landscape

    Get PDF
    Wildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely. Under higher human activity, mammals were less active in undeveloped areas but unexpectedly more active in developed areas while exhibiting greater nocturnality. Carnivores were most sensitive, showing the strongest decreases in activity and greatest increases in nocturnality. Wildlife managers must consider how habituation and uneven sensitivity across species may cause fundamental differences in human–wildlife interactions along gradients of human influence.Peer reviewe

    Human Disturbance and the Physiological Response of Elk in Eastern Washington

    Get PDF
    Stress hormone measures have proven useful for assessing effects of human disturbance on wildlife populations. However, most studies are of short duration or limited geographic scope (i.e., without spatial replication), leading to concerns about confounding effects of biotic conditions. Previous research correlated fecal glucocorticoid metabolites (FGMs) of elk (Cervus elaphus) with human disturbance, but this factor also co-varied with seasonal climatic conditions, making it difficult to make broader inference regarding the role of human disturbance. In this study we attempted to simultaneously evaluate the effects of climatic conditions and human disturbance by comparing the year-round physiological stress response of elk to varying levels of human disturbance at three study sites in south-central Washington State. FGMs were consistently elevated throughout the year at the study site receiving the greatest amount of human disturbance. We observed support for a positive effect of precipitation and increasing temperature on FGMs at the low-disturbance site, but less support for importance of climatic variables in explaining FGMs at the high-disturbance sites – suggesting that climatic variables were likely of secondary importance compared to anthropogenic stressors in elk at those sites. Collectively, while we were unable to disentangle the effects of site-specific stressors, our findings suggest that in this environment, humans were a dominant stressor influencing FGM levels. Therefore, interpreting results of physiological studies requires that researchers account for a broad combination of biotic and abiotic stressors at a particular study location. We particularly encourage future investigators to account for the potential confounding effect of human disturbance that could override other stressors

    Evaluating the Effect of Short-Term Capture and Handling on Fecal Glucocorticoid Metabolite Levels in Mourning Doves

    Get PDF
    The measurement of stress hormones (i.e., glucocorticoids) has greatly advanced animal conservation. Fecal glucocorticoid metabolite assays are valuable because they are noninvasive, but their ability to detect responses to short-term (\u3c30 \u3emin) stressors in a way similar to blood serum assays is comparatively less well understood. We evaluated whether fecal glucocorticoid metabolites (FGMs) increased in captive wild mourning doves (Zenaida macroura) exposed to either a brief (\u3c2 \u3emin) capture, handling and release (CHR) or capture stress protocol (CSP; i.e., capture, hold for 30 min, release) treatment. Previous studies have shown that mourning doves exhibit elevated FGMs within 2-3 hrs of experimental challenges. Therefore, we attempted to collect feces every hour for 24 h pre-treatment and 36 h post-treatment. We did not detect a consistent increase in FGMs in response to CHR or CSP treatments. Though additional research is needed, FGM levels were lower the longer birds were held in captivity and we did not observe sex-based or seasonal differences in FGM responses. For mourning doves, and likely other species, plasma corticosterone analysis is better suited to assess responses to short-term stressors. Alternatively, FGMs are ideal for research focused on longer-term patterns in physiological state because they are not sensitive to exposure to temporary, acute stressors

    Variation in regional and landscape effects on occupancy of temperate bats in the southeastern U.S..

    No full text
    Habitat loss, wind energy development, and the disease white-nose syndrome are major threats contributing to declines in bat populations in North America. In the southeastern US in particular, the recent arrival of white-nose syndrome and changes in landscape composition and configuration have driven shifts in bat species populations and distributions. Effective management strategies which address these large-scale, community-level threats require landscape-scale analyses. Our objective was to model the relationship between ecoregional and landscape factors and occupancy by all bat species in South Carolina, USA, during summer. We conducted acoustic surveys from mid-May through July 2015 and 2016 and evaluated temporally dynamic occupancy models for eight bat species or species groups at the 100 km2 level. We found significant effects of landscape factors such as ecoregion and forest edge density for three species, but habitat condition effects were not statistically significant for five other species. Thus, for some species, site-use analyses may be more appropriate than larger scale occupancy analyses. However, our occupancy predictions generally matched statewide historical distributions for all species, suggesting our approach could be useful for monitoring landscape-level trends in bat species. Thus, while our scale of study was likely too coarse for assessing fine-scale habitat associations for all bat species, our findings can improve future monitoring efforts, inform conservation priorities, and guide subsequent landscape-scale studies for bat species and community-level responses to global change

    Variation in regional and landscape effects on occupancy of temperate bats in the southeastern U.S.

    Get PDF
    Habitat loss, wind energy development, and the disease white-nose syndrome are major threats contributing to declines in bat populations in North America. In the southeastern US in particular, the recent arrival of white-nose syndrome and changes in landscape composition and configuration have driven shifts in bat species populations and distributions. Effective management strategies which address these large-scale, community-level threats require landscape-scale analyses. Our objective was to model the relationship between ecoregional and landscape factors and occupancy by all bat species in South Carolina, USA, during summer. We conducted acoustic surveys from mid-May through July 2015 and 2016 and evaluated temporally dynamic occupancy models for eight bat species or species groups at the 100 km2 level. We found significant effects of landscape factors such as ecoregion and forest edge density for three species, but habitat condition effects were not statistically significant for five other species. Thus, for some species, site-use analyses may be more appropriate than larger scale occupancy analyses. However, our occupancy predictions generally matched statewide historical distributions for all species, suggesting our approach could be useful for monitoring landscape-level trends in bat species. Thus, while our scale of study was likely too coarse for assessing fine-scale habitat associations for all bat species, our findings can improve future monitoring efforts, inform conservation priorities, and guide subsequent landscape-scale studies for bat species and community-level responses to global change
    corecore