1,274 research outputs found

    Atomic oxygen beam source for erosion simulation

    Get PDF
    A device for the production of low energy (3 to 10 eV) neutral atomic beams for surface modification studies is described that reproduces the flux of atomic oxygen in low Earth orbit. The beam is produced by the acceleration of plasma ions onto a negatively biased plate of high-Z metal; the ions are neutralized and reflected by the surface, retaining some fraction of their incident kinetic energy, forming a beam of atoms. The plasma is generated by a coaxial RF exciter which produces a magnetically-confined (4 kG) plasma column. At the end of the column, ions fall through the sheath to the plate, whose bias relative to the plasma can be varied to adjust the beam energy. The source provides a neutral flux approximately equal to 5 x 10(exp 16)/sq cm at a distance of 9 cm and a fluence approximately equal to 10(exp 20)/sq cm in five hours. The composition and energy of inert gas beams was diagnosed using a mass spectometer/energy analyzer. The energy spectra of the beams demonstrate energies in the range 5 to 15 eV, and qualitatively show expected dependences upon incident and reflecting atom species and potential drop. Samples of carbon film, carbon-based paint, Kapton, mylar, and teflon exposed to atomic O beams show erosion quite similar to that observed in orbit on the space shuttle

    Characterization of a 5-eV neutral atomic oxygen beam facility

    Get PDF
    An experimental effort to characterize an existing 5-eV neutral atomic oxygen beam facility being developed at Princeton Plasma Physics Laboratory is described. This characterization effort includes atomic oxygen flux and flux distribution measurements using a catalytic probe, energy determination using a commercially designed quadrupole mass spectrometer (QMS), and the exposure of oxygen-sensitive materials in this beam facility. Also, comparisons were drawn between the reaction efficiencies of materials exposed in plasma ashers, and the reaction efficiencies previously estimated from space flight experiments. The results of this study show that the beam facility is capable of producing a directional beam of neutral atomic oxygen atoms with the needed flux and energy to simulate low Earth orbit (LEO) conditions for real time accelerated testing. The flux distribution in this facility is uniform to +/- 6 percent of the peak flux over a beam diameter of 6 cm

    Exercise-induced improvements in liver fat and endothelial function are not sustained 12 months following cessation of exercise supervision in non-alcoholic fatty liver disease (NAFLD).

    Get PDF
    AIMS: Supervised exercise reduces liver fat and improves endothelial function, a surrogate of cardiovascular disease risk, in non-alcoholic fatty liver disease (NAFLD). We hypothesised that after a 16-week supervised exercise program, patients would maintain longer-term improvements in cardiorespiratory fitness, liver fat and endothelial function. MATHERIALS AND METHODS: Ten NAFLD patients [5/5 males/females, age 51±13years, BMI 31±3 kg.m(2) (mean±s.d.)] underwent a 16-week supervised moderate-intensity exercise intervention. Biochemical markers, cardiorespiratory fitness (VO2peak), subcutaneous, visceral and liver fat (measured by magnetic resonance imaging and spectroscopy respectively) and brachial artery flow-mediated dilation (FMD) were assessed at baseline, after 16 weeks supervised training and 12-months after ending supervision. RESULTS: Despite no significant change in body weight, there were significant improvements in VO2peak [6.5 ml.kg(-1).min(-1) (95% CI 2.8, 10.1); P=0.003], FMD [2.9% (1.5, 4.2); P=0.001], liver transaminases (P0.05) and liver fat [1.4% (-13.0, 15.9); P=0.83] were not significantly different from baseline. CONCLUSIONS: Twelve months following cessation of supervision, exercise-mediated improvements in liver fat and other cardiometabolic variables had reversed with cardiorespiratory fitness at baseline levels. Maintenance of high cardiorespiratory fitness and stability of body weight are critical public health considerations for the treatment of NAFLD.International Journal of Obesity accepted article preview online, 21 July 2016. doi:10.1038/ijo.2016.123

    Refractive Index of Humid Air in the Infrared: Model Fits

    Get PDF
    The theory of summation of electromagnetic line transitions is used to tabulate the Taylor expansion of the refractive index of humid air over the basic independent parameters (temperature, pressure, humidity, wavelength) in five separate infrared regions from the H to the Q band at a fixed percentage of Carbon Dioxide. These are least-squares fits to raw, highly resolved spectra for a set of temperatures from 10 to 25 C, a set of pressures from 500 to 1023 hPa, and a set of relative humidities from 5 to 60%. These choices reflect the prospective application to characterize ambient air at mountain altitudes of astronomical telescopes.Comment: Corrected exponents of c0ref, c1ref and c1p in Table

    Model studies of dense water overflows in the Faroese Channels Topical Collection on the 5th International Workshop on Modelling the Ocean (IWMO) in Bergen, Norway 17-20 June 2013

    Get PDF
    The overflow of dense water from the Nordic Seas through the Faroese Channel system was investigated through combined laboratory experiments and numerical simulations using the Massachusetts Institute of Technology General Circulation Model. In the experimental study, a scaled, topographic representation of the Faroe-Shetland Channel, Wyville-Thomson Basin and Ridge and Faroe Bank Channel seabed bathymetry was constructed and mounted in a rotating tank. A series of parametric experiments was conducted using dye-tracing and drogue-tracking techniques to investigate deep-water overflow pathways and circulation patterns within the modelled region. In addition, the structure of the outflowing dense bottom water was investigated through density profiling along three cross-channel transects located in the Wyville-Thomson Basin and the converging, up-sloping approach to the Faroe Bank Channel. Results from the dye-tracing studies demonstrate a range of parametric conditions under which dense water overflow across the Wyville-Thomson Ridge is shown to occur, as defined by the Burger number, a non-dimensional length ratio and a dimensionless dense water volume flux parameter specified at the Faroe-Shetland Channel inlet boundary. Drogue-tracking measurements reveal the complex nature of flow paths and circulations generated in the modelled topography, particularly the development of a large anti-cyclonic gyre in the Wyville-Thompson Basin and up-sloping approach to the Faroe Bank Channel, which diverts the dense water outflow from the Faroese shelf towards the Wyville-Thomson Ridge, potentially promoting dense water spillage across the ridge itself. The presence of this circulation is also indicated by associated undulations in density isopycnals across the Wyville-Thomson Basin. Numerical simulations of parametric test cases for the main outflow pathways and density structure in a similarly-scaled Faroese Channels model domain indicate excellent qualitative agreement with the experimental observations and measurements. In addition, the comparisons show that strong temporal variability in the predicted outflow pathways and circulations have a strong influence in regulating the Faroe Bank Channel and Wyville-Thomson Ridge overflows, as well as in determining the overall response in the Faroese Channels to changes in the Faroe-Shetland Channel inlet boundary conditions. © 2014 Springer-Verlag Berlin Heidelberg

    Sideband Cooling Micromechanical Motion to the Quantum Ground State

    Full text link
    The advent of laser cooling techniques revolutionized the study of many atomic-scale systems. This has fueled progress towards quantum computers by preparing trapped ions in their motional ground state, and generating new states of matter by achieving Bose-Einstein condensation of atomic vapors. Analogous cooling techniques provide a general and flexible method for preparing macroscopic objects in their motional ground state, bringing the powerful technology of micromechanics into the quantum regime. Cavity opto- or electro-mechanical systems achieve sideband cooling through the strong interaction between light and motion. However, entering the quantum regime, less than a single quantum of motion, has been elusive because sideband cooling has not sufficiently overwhelmed the coupling of mechanical systems to their hot environments. Here, we demonstrate sideband cooling of the motion of a micromechanical oscillator to the quantum ground state. Entering the quantum regime requires a large electromechanical interaction, which is achieved by embedding a micromechanical membrane into a superconducting microwave resonant circuit. In order to verify the cooling of the membrane motion into the quantum regime, we perform a near quantum-limited measurement of the microwave field, resolving this motion a factor of 5.1 from the Heisenberg limit. Furthermore, our device exhibits strong-coupling allowing coherent exchange of microwave photons and mechanical phonons. Simultaneously achieving strong coupling, ground state preparation and efficient measurement sets the stage for rapid advances in the control and detection of non-classical states of motion, possibly even testing quantum theory itself in the unexplored region of larger size and mass.Comment: 13 pages, 7 figure

    Global analyses of TetR family transcriptional regulators in mycobacteria indicates conservation across species and diversity in regulated functions

    Get PDF
    BACKGROUND: Mycobacteria inhabit diverse niches and display high metabolic versatility. They can colonise both humans and animals and are also able to survive in the environment. In order to succeed, response to environmental cues via transcriptional regulation is required. In this study we focused on the TetR family of transcriptional regulators (TFTRs) in mycobacteria. RESULTS: We used InterPro to classify the entire complement of transcriptional regulators in 10 mycobacterial species and these analyses showed that TFTRs are the most abundant family of regulators in all species. We identified those TFTRs that are conserved across all species analysed and those that are unique to the pathogens included in the analysis. We examined genomic contexts of 663 of the conserved TFTRs and observed that the majority of TFTRs are separated by 200 bp or less from divergently oriented genes. Analyses of divergent genes indicated that the TFTRs control diverse biochemical functions not limited to efflux pumps. TFTRs typically bind to palindromic motifs and we identified 11 highly significant novel motifs in the upstream regions of divergently oriented TFTRs. The C-terminal ligand binding domain from the TFTR complement in M. tuberculosis showed great diversity in amino acid sequence but with an overall architecture common to other TFTRs. CONCLUSION: This study suggests that mycobacteria depend on TFTRs for the transcriptional control of a number of metabolic functions yet the physiological role of the majority of these regulators remain unknown. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1696-9) contains supplementary material, which is available to authorized users

    X-ray Diffraction and Molecular Dynamics Study of Medium-range Order in Ambient and Hot Water

    Full text link
    We have developed x-ray diffraction measurements with high energy-resolution and accuracy to study water structure at three different temperatures (7, 25 and 66 C) under normal pressure. Using a spherically curved Ge crystal an energy resolution better than 15 eV has been achieved which eliminates influence from Compton scattering. The high quality of the data allows a precise oxygen-oxygen pair correlation function (PCF) to be directly derived from the Fourier transform of the experimental data resolving shell structure out to ~12 {\AA}, i.e. 5 hydration shells. Large-scale molecular dynamics (MD) simulations using the TIP4P/2005 force-field reproduce excellently the experimental shell-structure in the range 4-12 {\AA} although less agreement is seen for the first peak in the PCF. The Local Structure Index [J. Chem. Phys. 104, 7671 (1996)] identifies a tetrahedral minority giving the intermediate-range oscillations in the PCF and a disordered majority providing a more featureless background in this range. The current study supports the proposal that the structure of liquid water, even at high temperatures, can be described in terms of a two-state fluctuation model involving local structures related to the high-density and low-density forms of liquid water postulated in the liquid-liquid phase transition hypothesis.Comment: Submitted to Phys. Chem. Chem. Phy

    Threat assessment, sense making, and critical decision-making in police, military, ambulance, and fire services

    Get PDF
    Military and emergency response remain inherently dangerous occupations that require the ability to accurately assess threats and make critical decisions under significant time pressures. The cognitive processes associated with these abilities are complex and have been the subject of several significant, albeit service specific studies. Here, we present an attempt at finding the commonalities in threat assessment, sense making, and critical decision-making for emergency response across police, military, ambulance, and fire services. Relevant research is identified and critically appraised through a systematic literature review of English-language studies published from January 2000 through July 2020 on threat assessment and critical decision-making theory in dynamic emergency service and military environments. A total of 10,084 titles and abstracts were reviewed, with 94 identified as suitable for inclusion in the study. We then present our findings focused on six lines of enquiry: Bibliometrics, Language, Situation Awareness, Critical Decision Making, Actions, and Evaluation. We then thematically analyse these findings to reveal the commonalities between the four services. Despite existing single or dual service studies in the field, this research is significant in that it is the first examine decision making and threat assessment theory across all four contexts of military, police, fire and ambulance services, but it is also the first to assess the state of knowledge and explore the extent that commonality exists and models or practices can be applied across each discipline. The results demonstrate all military and emergency services personnel apply both intuitive and formal decision-making processes, depending on multiple situational and individual factors. Institutional restriction of decision-making to a single process at the expense of the consideration of others, or the inappropriate training and application of otherwise appropriate decision-making processes in certain circumstances is likely to increase the potential for adverse outcomes, or at the very least restrict peak performance being achieved. The applications of the findings of the study not only extend to facilitating improved practice in each of the individual services examined, but provide a basis to assist future research, and contribute to the literature exploring threat assessment and decision making in dynamic contexts
    corecore