2,382 research outputs found
Electrochemical metal ion sensors. Exploiting amino acids and peptides as recognition elements
Amino acids and peptides are known to bind metal ions, in some cases very strongly. There are only a few examples of exploiting this binding in sensors. The review covers the current literature on the interaction of peptides and metals and the electrochemistry of bound metal ions. Peptides may be covalently attached to surfaces. Of particular interest is the attachment to gold via sulfur linkages. Sulfur-containing peptides (eg cysteine) may be adsorbed directly, while any amino group can be covalently attached to a carboxylic acid-terminated thiol. Once at a surface, the possibility for using the attached peptide as a sensor for metal ions becomes realised. Results from the authors’ laboratory and elsewhere have shown the potential for selective monitoring of metal ions at ppt levels. Examples of the use of poly-aspartic acid and the copper binding peptide Gly-Gly-His for detecting copper ions are given.<br /
Benchmarking a modified version of the civ3 nonrelativistic atomic-structure code within Na-like-tungsten R -matrix calculations
In this work we explore the validity of employing a modified version of the nonrelativistic structure code civ3 for heavy, highly charged systems, using Na-like tungsten as a simple benchmark. Consequently, we present radiative and subsequent collisional atomic data compared with corresponding results from a fully relativistic structure and collisional model. Our motivation for this line of study is to benchmark civ3 against the relativistic grasp0 structure code. This is an important study as civ3 wave functions in nonrelativistic R-matrix calculations are computationally less expensive than their Dirac counterparts. There are very few existing data for the W LXIV ion in the literature with which we can compare except for an incomplete set of energy levels available from the NIST database. The overall accuracy of the present results is thus determined by the comparison between the civ3 and grasp0 structure codes alongside collisional atomic data computed by the R-matrix Breit-Pauli and Dirac codes. It is found that the electron-impact collision strengths and effective collision strengths computed by these differing methods are in good general agreement for the majority of the transitions considered, across a broad range of electron temperatures.</p
Terminology of separation methods (IUPAC Recommendations 2017)
This article has an erratum. Doi: 10.1515/pac-2021-1006Recommendations are given concerning the terminology of methods of separation in analytical chemistry, including chromatography, electromigration techniques, and field-flow fractionation and related techniques.Peer reviewe
GALEX FUV Observations of Comet C/2004 Q2 (Machholz): The Ionization Lifetime of Carbon
We present a measurement of the lifetime of ground state atomic carbon,
C(^3P), against ionization processes in interplanetary space and compare it to
the lifetime expected from the dominant physical processes likely to occur in
this medium. Our measurement is based on analysis of a far ultraviolet (FUV)
image of comet C/2004 Q2 (Machholz) recorded by the Galaxy Evolution Explorer
(GALEX) on 2005 March 1. The bright CI 1561 A and 1657 A multiplets dominate
the GALEX FUV band. We used the image to create high S/N radial profiles that
extended beyond one million km from the comet nucleus. Our measurements yielded
a total carbon lifetime of 7.1 -- 9.6 x 10^5 s (scaled to 1 AU). Which compares
favorably to calculations assuming solar photoionization, solar wind proton
change exchange and solar wind electron impact ionization are the dominant
processes occurring in this medium and that comet Machholz was embedded in the
slow solar wind. The shape of the CI profiles inside 3x10^5 km suggests that
either the CO lifetime is shorter than previously thought and/or a
shorter-lived carbon-bearing parent molecule, such as CH_4 is providing the
majority of the carbon in this region of the coma of comet Machholz.Comment: 26 pages, 6 figures, accepted for publication in the Astrophysical
Journa
High Resolution HST-STIS Spectra of CI and CO in the Beta Pictoris Circumstellar Disk
High resolution FUV echelle spectra showing absorption features arising from
CI and CO gas in the Beta Pictoris circumstellar (CS) disk were obtained on
1997 December 6 and 19 using the Space Telescope Imaging Spectrograph (STIS).
An unsaturated spin-forbidden line of CI at 1613.376 A not previously seen in
spectra of Beta Pictoris was detected, allowing for an improved determination
of the column density of CI at zero velocity relative to the star (the stable
component), N = (2-4) x 10^{16} cm^{-2}. Variable components with multiple
velocities, which are the signatures of infalling bodies in the Beta Pictoris
CS disk, are observed in the CI 1561 A and 1657 A multiplets. Also seen for the
first time were two lines arising from the metastable singlet D level of
carbon, at 1931 A and 1463 A The results of analysis of the CO A-X (0-0),
(1-0), and (2-0) bands are presented, including the bands arising from {13}^CO,
with much better precision than has previously been possible, due to the very
high resolution provided by the STIS echelle gratings. Only stable CO gas is
observed, with a column density N(CO) = (6.3 +/- 0.3) x 10^{14} cm{-2}. An
unusual ratio of the column densities of {12}^CO to {13}^CO is found (R = 15
+/- 2). The large difference between the column densities of CI and CO
indicates that photodissociation of CO is not the primary source of CI gas in
the disk, contrary to previous suggestion.Comment: 13 pages, including 6 figures. LaTex2e (emulateapj5.sty). Accepted
for publication in Ap
Bayesian approaches to assigning the source of an odour detected by an electronic nose
After a brief review of electronic nose technology, the use of an Australian electronic nose to identify an unknown odour out of a set of known odours is described. Multivariate supervised learning is accomplished by applying Bayes’ theorem to data from metal oxide semiconductor sensors responding to each of a number of target odours. An odour from an unknown source is then assigned a probability of membership of each of the training sets by applying either a Naïve Bayes algorithm to the deemed independent data from each sensor, or to a multinormal distribution of the data. A flat prior (equal probabilities of each outcome) is usually adopted, but for particular situations where one odour is known to predominate, then suitably weighted priors can be used. A source ‘none of the above’, which has a small likelihood covering the space of the possible sensor responses, is included for completeness. This also avoids the assignment to a source that has an extremely small probability but which is greater than that of any other source. Examples are given of a single source (detecting diabetes from a patient’s breath), and three sources of unpleasant odours in a meat processing plant
The GREAT triggerless total data readout method
Recoil decay tagging (RDT) is a very powerful method for the spectroscopy of exotic nuclei. RDT is a delayed coincidence technique between detectors usually at the target position and at the focal plane of a spectrometer. Such measurements are often limited by dead time. This paper describes a novel triggerless data acquisition method, which is being developed for the Gamma Recoil Electron Alpha Tagging (GREAT) spectrometer, that overcomes this limitation by virtually eliminating dead time. Our solution is a total data readout (TDR) method where all channels run independently and are associated in software to reconstruct events. The TDR method allows all the data from both target position and focal plane to be collected with practically no dead-time losses. Each data word is associated with a timestamp generated from a global 100-MHz clock. Events are then reconstructed in real time in the event builder using temporal and spatial associations defined by the physics of the experimen
Theory and applications of atomic and ionic polarizabilities
Atomic polarization phenomena impinge upon a number of areas and processes in
physics. The dielectric constant and refractive index of any gas are examples
of macroscopic properties that are largely determined by the dipole
polarizability. When it comes to microscopic phenomena, the existence of
alkaline-earth anions and the recently discovered ability of positrons to bind
to many atoms are predominantly due to the polarization interaction. An
imperfect knowledge of atomic polarizabilities is presently looming as the
largest source of uncertainty in the new generation of optical frequency
standards. Accurate polarizabilities for the group I and II atoms and ions of
the periodic table have recently become available by a variety of techniques.
These include refined many-body perturbation theory and coupled-cluster
calculations sometimes combined with precise experimental data for selected
transitions, microwave spectroscopy of Rydberg atoms and ions, refractive index
measurements in microwave cavities, ab initio calculations of atomic structures
using explicitly correlated wave functions, interferometry with atom beams, and
velocity changes of laser cooled atoms induced by an electric field. This
review examines existing theoretical methods of determining atomic and ionic
polarizabilities, and discusses their relevance to various applications with
particular emphasis on cold-atom physics and the metrology of atomic frequency
standards.Comment: Review paper, 44 page
The deuterium-to-oxygen ratio in the interstellar medium
Because the ionization balances for HI, OI, and DI are locked together by
charge exchange, D/O is an important tracer for the value of the D/H ratio and
for potential spatial variations in the ratio. As the DI and OI column
densities are of similar orders of magnitude for a given sight line,
comparisons of the two values will generally be less subject to systematic
errors than comparisons of DI and HI, which differ by about five orders of
magnitude. Moreover, D/O is additionally sensitive to astration, because as
stars destroy deuterium, they should produce oxygen. We report here the results
of a survey of D/O in the interstellar medium performed with FUSE. We also
compare these results with those for D/N. Together with a few results from
previous missions, the sample totals 24 lines of sight. The distances range
from a few pc to ~2000 pc and log N(DI) from ~13 to ~16 (cm-2). The D/O ratio
is constant in the local interstellar medium out to distances of ~150 pc and
N(DI) ~ 1x10^15 cm-2, i.e. within the Local Bubble. In this region of the
interstellar space, we find D/O = (3.84+/-0.16)x10^-2 (1 sigma in the mean).
The homogeneity of the local D/O measurements shows that the spatial variations
in the local D/H and O/H must be extremely small, if any. A comparison of the
Local Bubble mean value with the few D/O measurements available for low
metallicity quasar sight lines shows that the D/O ratio decreases with cosmic
evolution, as expected. Beyond the Local Bubble we detected significant spatial
variations in the value of D/O. This likely implies a variation in D/H, as O/H
is known to not vary significantly over the distances covered in this study.
Our dataset suggests a present-epoch deuterium abundance below 1x10^-5, i.e.
lower than the value usually assumed, around 1.5x10^-5.Comment: 17 pages, 9 figures, 4 tables, accepted for publication in the
Astrophysical Journa
- …
