677 research outputs found
On Symbolic Ultrametrics, Cotree Representations, and Cograph Edge Decompositions and Partitions
Symbolic ultrametrics define edge-colored complete graphs K_n and yield a
simple tree representation of K_n. We discuss, under which conditions this idea
can be generalized to find a symbolic ultrametric that, in addition,
distinguishes between edges and non-edges of arbitrary graphs G=(V,E) and thus,
yielding a simple tree representation of G. We prove that such a symbolic
ultrametric can only be defined for G if and only if G is a so-called cograph.
A cograph is uniquely determined by a so-called cotree. As not all graphs are
cographs, we ask, furthermore, what is the minimum number of cotrees needed to
represent the topology of G. The latter problem is equivalent to find an
optimal cograph edge k-decomposition {E_1,...,E_k} of E so that each subgraph
(V,E_i) of G is a cograph. An upper bound for the integer k is derived and it
is shown that determining whether a graph has a cograph 2-decomposition, resp.,
2-partition is NP-complete
Longitudinal Metabolomic Profiling of Amino Acids and Lipids across Healthy Pregnancy
Pregnancy is characterized by a complexity of metabolic processes that may
impact fetal development and ultimately, infant health outcomes. However, our
understanding of whole body maternal and fetal metabolism during this critical
life stage remains incomplete. The objective of this study is to utilize
metabolomics to profile longitudinal patterns of fasting maternal metabolites
among a cohort of non-diabetic, healthy pregnant women in order to advance our
understanding of changes in protein and lipid concentrations across gestation,
the biochemical pathways by which they are metabolized and to describe
variation in maternal metabolites between ethnic groups. Among 160 pregnant
women, amino acids, tricarboxylic acid (TCA) cycle intermediates, keto-bodies
and non-esterified fatty acids were detected by liquid chromatography coupled
with mass spectrometry, while polar lipids were detected through flow-injected
mass spectrometry. The maternal plasma concentration of several essential and
non-essential amino acids, long-chain polyunsaturated fatty acids, free
carnitine, acetylcarnitine, phosphatidylcholines and sphingomyelins
significantly decreased across pregnancy. Concentrations of several TCA
intermediates increase as pregnancy progresses, as well as the keto-body
β-hydroxybutyrate. Ratios of specific acylcarnitines used as indicators of
metabolic pathways suggest a decreased beta-oxidation rate and increased
carnitine palmitoyltransferase-1 enzyme activity with advancing gestation.
Decreasing amino acid concentrations likely reflects placental uptake and
tissue biosynthesis. The absence of any increase in plasma non-esterified
fatty acids is unexpected in the catabolic phase of later pregnancy and may
reflect enhanced placental fatty acid uptake and utilization for fetal tissue
growth. While it appears that energy production through the TCA cycle
increases as pregnancy progresses, decreasing patterns of free carnitine and
acetylcarnitine as well as increased carnitine palmitoyltransferase-1 rate and
β-hydroxybutyrate levels suggest a concomitant upregulation of ketogenesis to
ensure sufficient energy supply in the fasting state. Several differences in
metabolomic profiles between Hispanic and non-Hispanic women demonstrate
phenotypic variations in prenatal metabolism which should be considered in
future studies
Quadrilateral-octagon coordinates for almost normal surfaces
Normal and almost normal surfaces are essential tools for algorithmic
3-manifold topology, but to use them requires exponentially slow enumeration
algorithms in a high-dimensional vector space. The quadrilateral coordinates of
Tollefson alleviate this problem considerably for normal surfaces, by reducing
the dimension of this vector space from 7n to 3n (where n is the complexity of
the underlying triangulation). Here we develop an analogous theory for
octagonal almost normal surfaces, using quadrilateral and octagon coordinates
to reduce this dimension from 10n to 6n. As an application, we show that
quadrilateral-octagon coordinates can be used exclusively in the streamlined
3-sphere recognition algorithm of Jaco, Rubinstein and Thompson, reducing
experimental running times by factors of thousands. We also introduce joint
coordinates, a system with only 3n dimensions for octagonal almost normal
surfaces that has appealing geometric properties.Comment: 34 pages, 20 figures; v2: Simplified the proof of Theorem 4.5 using
cohomology, plus other minor changes; v3: Minor housekeepin
New-particle formation events in a continental boundary layer: first results from the SATURN experiment
International audienceDuring the SATURN experiment, which took place from 27 May to 14 June 2002, new particle formation in the continental boundary layer was investigated. Simultaneous ground-based and tethered-balloon-borne measurements were performed, including meteorological parameters, particle number concentrations and size distributions, gaseous precursor concentrations and SODAR and LIDAR observations. Newly formed particles were observed inside the residual layer, before the break-up process of the nocturnal inversion, and inside the mixing layer throughout the break-up of the nocturnal inversion and during the evolution of the planetary boundary layer.</p
Beyond representing orthology relations by trees
Reconstructing the evolutionary past of a family of genes is an important aspect of many genomic studies. To help with this, simple relations on a set of sequences called orthology relations may be employed. In addition to being interesting from a practical point of view they are also attractive from a theoretical perspective in that e.\,g.\,a characterization is known for when such a relation is representable by a certain type of phylogenetic tree. For an orthology relation inferred from real biological data it is however generally too much to hope for that it satisfies that characterization. Rather than trying to correct the data in some way or another which has its own drawbacks, as an alternative, we propose to represent an orthology relation in terms of a structure more general than a phylogenetic tree called a phylogenetic network. To compute such a network in the form of a level-1 representation for , we formalize an orthology relation in terms of the novel concept of a symbolic 3- dissimilarity which is motivated by the biological concept of a ``cluster of orthologous groups'', or COG for short. For such maps which assign symbols rather that real values to elements, we introduce the novel {\sc Network-Popping} algorithm which has several attractive properties. In addition, we characterize an orthology relation on some set that has a level-1 representation in terms of eight natural properties for as well as in terms of level-1 representations of orthology relations on certain subsets of
Three-way symbolic tree-maps and ultrametrics
Three-way dissimilarities are a generalization of (two-way) dissimilarities which can be used to indicate the lack of homogeneity or resemblance between any three objects. Such maps have applications in cluster analysis and have been used in areas such as psychology and phylogenetics, where three-way data tables can arise. Special examples of such dissimilarities are three-way tree-metrics and ultrametrics, which arise from leaf-labelled trees with edges labelled by positive real numbers. Here we consider three-way maps which arise from leaf-labelled trees where instead the interior vertices are labelled by an arbitrary set of values. For unrooted trees, we call such maps three-way symbolic tree-maps; for rooted trees, we call them three-way symbolic ultrametrics since they can be considered as a generalization of the (two-way) symbolic ultrametrics of Bocker and Dress. We show that, as with two- and three-way tree-metrics and ultrametrics, three-way symbolic tree-maps and ultrametrics can be characterized via certain k-point conditions. In the unrooted case, our characterization is mathematically equivalent to one presented by Gurvich for a certain class of edge-labelled hypergraphs. We also show that it can be decided whether or not an arbitrary three-way symbolic map is a tree-map or a symbolic ultrametric using a triplet-based approach that relies on the so-called BUILD algorithm for deciding when a set of 3-leaved trees or triplets can be displayed by a single tree. We envisage that our results will be useful in developing new approaches and algorithms for understanding 3-way data, especially within the area of phylogenetics
Potentiation of thrombus instability: a contributory mechanism to the effectiveness of antithrombotic medications
© The Author(s) 2018The stability of an arterial thrombus, determined by its structure and ability to resist endogenous fibrinolysis, is a major determinant of the extent of infarction that results from coronary or cerebrovascular thrombosis. There is ample evidence from both laboratory and clinical studies to suggest that in addition to inhibiting platelet aggregation, antithrombotic medications have shear-dependent effects, potentiating thrombus fragility and/or enhancing endogenous fibrinolysis. Such shear-dependent effects, potentiating the fragility of the growing thrombus and/or enhancing endogenous thrombolytic activity, likely contribute to the clinical effectiveness of such medications. It is not clear how much these effects relate to the measured inhibition of platelet aggregation in response to specific agonists. These effects are observable only with techniques that subject the growing thrombus to arterial flow and shear conditions. The effects of antithrombotic medications on thrombus stability and ways of assessing this are reviewed herein, and it is proposed that thrombus stability could become a new target for pharmacological intervention.Peer reviewedFinal Published versio
Testing foundations of quantum mechanics with photons
The foundational ideas of quantum mechanics continue to give rise to
counterintuitive theories and physical effects that are in conflict with a
classical description of Nature. Experiments with light at the single photon
level have historically been at the forefront of tests of fundamental quantum
theory and new developments in photonics engineering continue to enable new
experiments. Here we review recent photonic experiments to test two
foundational themes in quantum mechanics: wave-particle duality, central to
recent complementarity and delayed-choice experiments; and Bell nonlocality
where recent theoretical and technological advances have allowed all
controversial loopholes to be separately addressed in different photonics
experiments.Comment: 10 pages, 5 figures, published as a Nature Physics Insight review
articl
A Delayed Choice Quantum Eraser
This paper reports a "delayed choice quantum eraser" experiment proposed by
Scully and Dr\"{u}hl in 1982. The experimental results demonstrated the
possibility of simultaneously observing both particle-like and wave-like
behavior of a quantum via quantum entanglement. The which-path or both-path
information of a quantum can be erased or marked by its entangled twin even
after the registration of the quantum.Comment: twocolumn, 4pages, submitted to PR
Mathematical Modelling of Optical Coherence Tomography
In this chapter a general mathematical model of Optical Coherence Tomography
(OCT) is presented on the basis of the electromagnetic theory. OCT produces
high resolution images of the inner structure of biological tissues. Images are
obtained by measuring the time delay and the intensity of the backscattered
light from the sample considering also the coherence properties of light. The
scattering problem is considered for a weakly scattering medium located far
enough from the detector. The inverse problem is to reconstruct the
susceptibility of the medium given the measurements for different positions of
the mirror. Different approaches are addressed depending on the different
assumptions made about the optical properties of the sample. This procedure is
applied to a full field OCT system and an extension to standard (time and
frequency domain) OCT is briefly presented.Comment: 28 pages, 5 figures, book chapte
- …
