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Abstract: Three-way dissimilarities are a generalization of (two-way) dis-
similarities which can be used to indicate the lack of homogeneity or resem-
blance between any three objects. Such maps have applications in cluster
analysis and have been used in areas such as psychology and phylogenetics,
where three-way data tables can arise. Special examples of such dissimi-
larities are three-way tree-metrics and ultrametrics, which arise from leaf-
labelled trees with edges labelled by positive real numbers. Here we consider
three-way maps which arise from leaf-labelled trees where instead the inte-
rior vertices are labelled by an arbitrary set of values. For unrooted trees,
we call such maps three-way symbolic tree-maps; for rooted trees, we call
them three-way symbolic ultrametrics since they can be considered as a gen-
eralization of the (two-way) symbolic ultrametrics of Böcker and Dress. We
show that, as with two- and three-way tree-metrics and ultrametrics, three-
way symbolic tree-maps and ultrametrics can be characterized via certain
k-point conditions. In the unrooted case, our characterization is mathemat-
ically equivalent to one presented by Gurvich for a certain class of edge-
labelled hypergraphs. We also show that it can be decided whether or not
an arbitrary three-way symbolic map is a tree-map or a symbolic ultrametric
using a triplet-based approach that relies on the so-called BUILD algorithm
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for deciding when a set of 3-leaved trees or triplets can be displayed by a
single tree. We envisage that our results will be useful in developing new
approaches and algorithms for understanding 3-way data, especially within
the area of phylogenetics.

Keywords: Three-way dissimilarity; Three-way symbolic map; Symbolic
ultrametric; Ultrametric; Tree-metric; Phylogenetic tree.

1. Introduction

Three-way dissimilarities are a generalization of (two-way) dis-
similarities, which can be used to indicate the lack of homogeneity or
resemblance between any three objects in a given set (Joly and Le Calvé,
1995). They have applications in areas such as psychology (Heiser and
Bennani, 1997) and phylogenetics (Levy, Yoshida, and Pachter, 2006),
where they have been used to cluster data presented in the form of
three-way data tables. Various special classes of three-way dissimilari-
ties have been introduced (see e.g. Chepoi and Fichet, 2007; Hayashi,
1972; Heiser and Bennani, 1997; Joly and Le Calvé, 1995). These in-
clude three-way dissimilarities that arise from leaf-labelled trees, where
the edges are weighted by positive real numbers. These so-called three-
way tree-metrics and three-way ultrametrics, which arise from unrooted
and rooted trees, respectively, generalize their much studied two-way
counterparts (cf. Chepoi and Fichet, 2007, for an overview).

Intriguingly, in Böcker and Dress (1998), Böcker and Dress showed
that the concept of ultrametricity for dissimilarities can be naturally ex-
tended to include two-way symmetric maps whose range is an arbitrary
set of symbols. In particular, they introduced the concept of a sym-
bolic ultrametric (a two-way map arising from a rooted, vertex-labelled
tree via the least common ancestor map), and characterized them in
terms of a 3- and a 4-point condition (see Section 2 for full details),
a result which had in fact been discovered independently in another
guise by V. Gurvich (1984) (see Section 2 for details). These conditions
generalize the well-known 3-point condition for ultrametricity (cf. e.g.
Semple and Steel, 2003, Chapter 7.2). Symbolic ultrametrics have been
found to have interesting connections with cograph theory (Hellmuth
et al., 2013), game theory (Gurvich, 1984; Gurvich, 2009), as well as
applications within phylogenetics (Hellmuth et al., 2015; Lafond and
El-Mabrouk, 2015). Therefore, it is of interest to understand how the
theory of symbolic ultrametrics can be extended to three-way maps, as
these may lead to useful new applications in these areas (e.g. see the
last section for a potential application in phylogenetics).
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Figure 1. Two trees which give rise to (a) a three-way symbolic tree-map and (b)
a three-way symbolic ultrametric.

In this paper, we shall address this question. Let X be a set (of
taxa) of size at least 3 and let M be a set (of symbols) of size at least 2. A
(three-way) symbolic map is a map δ :

(X
3

)
→ M . For example, consider

the unrooted tree in Figure 1(a) with leaf-set X = {1, 2, 3, 4, 5} whose
interior vertices are labelled by elements from the set M = {A, B}.
This tree gives rise naturally to a three-way symbolic map from X to
the set M ; to each triple of leaves we assign the element of M which
labels the vertex lying on all shortest paths between any two of these
three leaves (e.g., the triple {1, 3, 5} is assigned the symbol A). We call
symbolic maps that arise in this way three-way symbolic tree-maps.

In Section 3, we show that a three-way symbolic tree-map uniquely
determines its underlying labelled tree (Proposition 3.2), and also give
a 4- and 5-point characterization for such maps (see Theorem 3.3).
This result is mathematically equivalent to Gurvich (1984, Theorem
5), but for completeness we provide its proof. Our characterization for
three-way symbolic tree-maps is analogous to the well-known 4-point
condition for tree-metrics (cf. Semple and Steel, 2003, Chapter 7.1),
and also generalizes the conditions presented in Herrmann, Huber, and
Moulton (2012, Theorem 7) for determining when a three-way dissimi-
larity arises from a tree. To prove Theorem 3.3 we introduce a symbolic
variant of the Farris transform (Semple and Steel, 2003, p. 149), which
allows us to apply the main result from Böcker and Dress, 1998). We
conclude the section with a description of how our result is related to
the ones presented in Gurvich (1984).

In Section 4, we turn our attention to obtaining three-way sym-
bolic maps from rooted trees. Consider the rooted tree in Figure 1(b).
A symbolic ultrametric can be associated to this tree by defining the
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value for each pair of leaves to be the symbol labelling the least com-
mon ancestor vertex of these two leaves. Therefore, a natural way to
define a three-way symbolic ultrametric could be to take the value of
each triple of leaves to be the set consisting of the symbols labelling the
least common ancestor of all pairs of leaves in the triple (for example,
we would assign the set {A, B} to the triple 1, 2, 5). However, this does
not suffice to capture the tree (see Section 4).

Even so, as we shall see, if we consider the values of the triples to
be multisets instead of sets (for example, we would assign the multiset
{A, A, B} to the triple 1, 2, 5 in Figure 1(b)), then we can in fact recover
the underlying labelled tree in case |X| ≥ 5 (Theorem 4.4). We call
maps obtained in this way three-way symbolic ultrametrics. In Section 5,
we give 3-, 4- and 5-point conditions which ensure that a three-way
symbolic map that maps into the set of size 3 multisets of a set of
symbols is a symbolic ultrametric. This is somewhat surprising since
for three-way dissimilarities, a 6-point condition is required to ensure
that they can be represented by a rooted tree in an analogous way (cf.
Herrmann et al., 2012, Theorem 7).

We conclude the paper by considering an alternative approach
for deciding whether or not a three-way symbolic map is a tree-map or
symbolic ultrametric. This approach is based on the BUILD algorithm
(Aho et al., 1981), which can be used to decide when a set of triplets (i. e.
resolved rooted leaf-labelled trees each with three leaves) is displayed by
some supertree or not. Applying this algorithm to three-way symbolic
maps has the advantage that only sets of size three (as opposed to sets
of size up to five) need to be considered so as to determine if a three-
way symbolic map is a tree-map or a symbolic ultrametric. This could
potentially lead to practical algorithms for performing this task. In
Section 7, we present some future directions.

2. Preliminaries

For a set {x1, . . . , xk}, k ≥ 1, in the powerset P(X) of X and a
map δ : P(X) → M , we will write δ(x1, . . . , xk) instead of δ({x1, . . . , xk}).

A symbolic ultrametric (Böcker and Dress, 1998) is a 2-way sym-
bolic map D :

(X
2

)
→ M satisfying:

(U1) For all three distinct elements x, y, z ∈ X, at least two of the
three values D(x, y), D(y, z) and D(x, z) are the same.

(U2) There exists no four pairwise distinct elements x, y, z, u ∈ X such
that D(x, y) = D(y, z) = D(z, u) �= D(z, x) = D(x, u) = D(u, y).
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Suppose that T is a tree. Then we denote by L(T ) the set of
leaves of T and by V o(T ) := V (T ) − L(T ) the set of internal vertices of
T . If T is rooted then we denote by ρT the root of T . Moreover, for any
two distinct leaves x and y in T , we define the least common ancestor
lcaT (x, y) of x and y in T to be the last vertex in T that lies on both
of the paths which start at ρT and end in x and in y. If lcaT (x, y) is
adjacent with both x and y then we call the set {x, y} a cherry of T .
We also say that vertex v in T lies below a vertex w �= v in T if w lies
on the path from the root of T to v.

A (rooted/unrooted) phylogenetic tree T on X is a (rooted/un-
rooted) tree with leaf-set X that does not contain vertices of degree
two in case T is unrooted and no vertex with indegree and outdegree
one in case T is rooted. Note that we will only use the terms rooted or
unrooted in case it is not clear from the context which type of tree we
are considering. Two phylogenetic trees T and T ′ on X are isomorphic
if there exists a bijection V (T ) → V (T ′) that induces a graph isomor-
phism between T and T ′ that is the identity on X (i.e. the map which
takes every element in X to itself). In case T is a rooted phylogenetic
tree on X, and Y is a subset of X with size at least two, we let TY

denote the phylogenetic tree spanned by Y (obtained by suppressing
vertices with indegree and outdegree one), and say that TY is induced
by Y .

A labelled (rooted/unrooted) tree T on X is a pair (T, t), where
T is a (rooted/unrooted) phylogenetic tree on X, and t is a labelling
map on M , that is, a map from the internal vertices of T to a set M of
symbols. If t(u) �= t(v) for every u �= v contained in the same edge of
T , we say that T is discriminating. A labelled rooted tree T = (T, t)
on X is a representation of a (two-way) symbolic map D :

(X
2

)
→ M

(or T represents D) if for all distinct x, y ∈ X, we have D(x, y) =
t(lcaT (x, y)).

Theorem 2.1 [Böcker and Dress, 1998] Let D :
(X
2

)
→ M be a symbolic

map. There exists a discriminating labelled rooted tree T that represents
D if and only if D is a symbolic ultrametric. If this holds, then such a
tree is necessarily unique.

Interestingly, Theorem 2.1 appeared in a different guise in Gur-
vich (1984) (see also Gurvich, 2000, for more details) in the context of
game theory. Within this context, the leaves of the tree T are seen as
end of game situations, the label set M corresponds to a set of play-
ers, and a directed path from the root of T to a leaf is a sequence of
plays. As we will come back to this correspondence in Section 3, we
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Figure 2. (i) An edge-colored graph Δ on X = {x, y, z} adapted from Gurvich
(1984, Figure 1). (ii) An edge-colored graph Π on X = {x, y, z, u} adapted from
the same figure. Colors are represented in terms of different edge styles (plain,
dashed and dotted).

now review some relevant terminology and results presented in Gurvich
(1984).

Suppose that H is an edge-labelled graph on X, that is a graph
with vertex set V (H) = X and edge set E(H) =

(X
2

)
, equipped with

a map D : E(H) → M for a given, nonempty set M . Then D is a
(two-way) symbolic map on X, and any symbolic map D :

(X
2

)
→ M

can trivially be seen as an edge-labelled graph (H, D) on X.
An edge-labelled graph (H, D) on X is said to be linked if for

all m ∈ M , the graph Hm obtained from H by removing all edges
e ∈ E(H) for which D(e) = m holds is connected. For example, both
graphs Δ and Π depicted in Figure 2 are linked. If (H, D) does not
contain any linked subgraph, it is said to be separated.

The following result from Gurvich (1984) links the property for
an edge labelled graph to be separated with the representability of the
symbolic map it induces. For this, it relies on the equivalence between
the following three statements for a symbolic map D :

(X
2

)
→ M (see

Gurvich, 1984, Theorem 2 for the equivalence between (ii) and (iii),
and Gurvich, 1984, Theorem 4) for the equivalence between (i) and
(ii), where a discriminating labelled rooted tree is called a positional
structure, or PS for short):

(i) There exists a (unique) discriminating labelled rooted tree T that
represents D.

(ii) The edge-labelled graph (H, D) is separated.
(iii) The edge-labelled graph (H, D) does not contain any subgraph

isomorphic to Δ or Π (depicted in Figure 2).
As mentioned above, this result, and in particular the equivalence

between conditions (i) and (iii), provides a direct equivalent to Theo-
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rem 2.1. Indeed, as is easy to see a symbolic map D : X2 → M satisfies
(U1) (resp. (U2)) if and only if the edge-labelled graph (H, D) does not
contain a subgraph isomorphic to Δ (resp. Π), implying that condition
(iii) and the property of being a symbolic ultrametric are equivalent.

3. Three-Way Symbolic Tree-Maps

We begin by considering three-way symbolic maps that arise from
labelled unrooted trees. Such a tree T = (T, t) clearly gives rise to a
three-way symbolic map δT :

(X
3

)
→ M by putting, for all x, y, z ∈ X,

δT (x, y, z) = t(medT (x, y, z)), where medT (x, y, z) denotes the median
vertex of x, y, z in T (that is, the unique vertex lying on the paths from
x to y, from x to z and from y to z, respectively).

If for a three-way symbolic map δ :
(X
3

)
→ M , there exists a

labelled unrooted tree T such that δ = δT , we say that δ is a three-way
symbolic tree-map (on X), and that T is a representation of δ (or T
represents δ). We now characterize such maps. To do this, we define a
symbolic Farris transform, the definition of which is adapted from the
well-known Farris transform (Gurvich, 2009, p. 149) as follows.

Suppose T = (T, t) is a labelled unrooted tree on X where |X| ≥
4. Put δ = δT . Pick a leaf r ∈ X, and define a rooted phylogenetic
tree Tr on X − {r} as follows: direct all edges of T away from r, and
remove r and its outgoing edge. This induces a bijection ψr from the
set of internal vertices of T to the set of internal vertices of Tr. Hence
the map tr : V (Tr) → M which takes any internal vertex v of Tr to M
given by tr(v) = t(ψ−1

r (v)) is well-defined, and the pair Tr = (Tr, tr) is
a labelled rooted tree.

Now, suppose that δ is the three-way symbolic tree-map that is
represented by T , and that Dr is the symbolic ultrametric on X that
is represented by Tr.
Lemma 3.1 For all x, y ∈ X − {r} with |X| ≥ 4, we have Dr(x, y) =
δ(x, y, r).
Proof. It suffices to note that via the symbolic Farris transform, the
median vertex of x, y and r in T becomes the least common ancestor
of x and y in Tr. Denoting the latter by v, we then have Dr(x, y) =
tr(v) = t(ψ−1

r (v)) = t(medT (x, y, r)) = δ(x, y, r).
�

Motivated by this observation, for a three-way symbolic map δ :(X
3

)
→ M and some r ∈ X where |X| ≥ 4, we define the map

δr :
(

X − {r}
2

)
→ M ; δr(x, y) = δ(x, y, r),
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for all x, y ∈ X distinct (which can be considered as a symbolic analogue
of the Farris transform as defined in Gurvich (2009, p. 149). Using
Lemma 3.1, we can now prove a uniqueness result.

Proposition 3.2 Let δ :
(X
3

)
→ M be a three-way symbolic tree-map

where |X| ≥ 4. There exists a unique discriminating labelled unrooted
tree T that represents δ.

Proof. Let r ∈ X and consider the map δr :
(X−{r}

2
)

→ M . By
Lemma 3.1, δr is a symbolic ultrametric, and thus, admits a unique
discriminating representation Tr. Moreover, this representation is ob-
tained from a representation of δ, using the symbolic Farris transform.
This operation is clearly invertible, and preserves the property of being
discriminating. Thus, the labelled unrooted tree T obtained from Tr

by inverting the symbolic Farris transform is necessarily the only dis-
criminating representation of δ.
�

We now characterize three-way symbolic tree maps. As we shall
explain below, an equivalent characterization appears in Gurvich (1984)
in the guise of Theorem 5 of that paper. For the sake of completeness,
we present a proof within our framework. Subsequent to this, we explain
how the approach in Gurvich (1984) relates to ours.

Theorem 3.3 Suppose that |X| ≥ 4 and that δ :
(X
3

)
→ M is a three-

way symbolic map. Then δ is a three-way symbolic tree-map if and only
if δ satisfies the following two conditions:

(M1) For all {x, y, z, u} ∈
(X
4

)
, either

δ(x, y, z) = δ(x, y, u) = δ(x, z, u) = δ(y, z, u)

or two of these four are equal and so are the remaining two.

(M2) There does not exist {x, y, z, u, v} ∈
(X
5

)
such that

δ(v, x, y) = δ(v, y, z) = δ(v, z, u) �= δ(v, z, x) = δ(v, x, u) = δ(v, u, y).

In order to prove Theorem 3.3, we start with a useful lemma.

Lemma 3.4 Suppose that |X| ≥ 4 and that δ :
(X
3

)
→ M is a three-way

symbolic map satisfying (M1) and (M2). Then for all r ∈ X, the map
δr is a symbolic ultrametric.

Proof. Let r ∈ X. We need to show that δr satisfies properties (U1)
and (U2).
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To see that δr satisfies (U1), consider three elements x, y, z ∈
X − {r}. Since δ satisfies (M1) the set {δ(r, x, y), δ(r, x, z), δ(r, y, z)}
contains at most two distinct elements. As this set is precisely the set
{δr(x, y), δr(x, z), δr(y, z)}, (U1) follows.

To see that (U2) holds, assume for contradiction that there exist
four pairwise distinct elements x, y, z, u ∈ X − {r} such that δr(x, y) =
δr(y, z) = δr(z, u) �= δr(z, x) = δr(x, u) = δr(u, y). This implies
δ(r, x, y) = δ(r, y, z) = δ(r, z, u) �= δ(r, z, x) = δ(r, x, u) = δ(r, u, y),
which is impossible in view of (M2).
�

Note that the converse of the Lemma 3.4 is not true in general.
Consider for example the sets X = {1, . . . , n}, n ≥ 4, M = {A, B}, and
the map δ :

(X
3

)
→ M defined for x, y, z ∈ X by putting δ(x, y, z) =

A if 1 ∈ {x, y, z} and δ(x, y, z) = B otherwise. Clearly, δ does not
satisfy (M1), as we have δ(1, 2, 3) = δ(1, 2, 4) = δ(1, 3, 4) �= δ(2, 3, 4).
However, we have δ1(x, y) = A for all x, y ∈ X − {1}, which is clearly a
symbolic ultrametric. In fact, for any 2 ≤ k ≤ n we have δk(x, y) = A
if 1 ∈ {x, y} and δk(x, y) = B otherwise and, so, δk is also a symbolic
ultrametric on X − {k}.

Armed with Lemma 3.4, we can now prove Theorem 3.3.

Proof. Assume first that δ is a three-way symbolic tree-map, and denote
by T = (T, t) its representation. To see that δ satisfies (M1), consider
four pairwise distinct elements x, y, z, u ∈ X. Two cases may occur.
If medT (x, y, z) = medT (x, y, u) = medT (x, z, u) = medT (y, z, u), it
follows immediately that δ(x, y, z) = δ(x, y, u) = δ(x, z, u) = δ(y, z, u).
Otherwise, there exists two pairs, say {x, y} and {z, u}, such that the
path between x and y and the path between z and u are disjoint. In
this case, we have medT (x, y, z) = medT (x, y, u) �= medT (x, z, u) =
medT (y, z, u). If t(medT (x, y, z)) = t(medT (x, z, u)), it follows that
δ(x, y, z) = δ(x, y, u) = δ(x, z, u) = δ(y, z, u). Otherwise, we have
δ(x, y, z) = δ(x, y, u) �= δ(x, z, u) = δ(y, z, u). Thus, δ satisfies (M1).

If |X| = 4 then it is straight forward to check that the theorem
holds. So assume that |X| ≥ 5. To see that δ satisfies (M2), assume for
contradiction that there exist pairwise distinct x, y, z, u, v ∈ X such that
δ(v, x, y) = δ(v, y, z) = δ(v, z, u) �= δ(v, z, x) = δ(v, x, u) = δ(v, u, y).
We can apply the symbolic Farris transform to T and v, thus obtaining
a labelled rooted tree Tv. By Lemma 3.1, Tv is a representation of
δv, implying that δv is a symbolic ultrametric. But, by definition, δv

satisfies δv(x, y) = δv(y, z) = δv(z, u) �= δv(z, x) = δv(x, u) = δv(u, y),
which contradicts (U2).
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Conversely, assume that δ satisfies Properties (M1) and (M2), and
let r ∈ X. By Lemma 3.4, the map δr is a symbolic ultrametric. Thus,
there exists a labelled rooted tree Tr = (Tr, tr) on X − {r} representing
δr. Consider the labelled unrooted tree T = (T, t) on X defined as
follows. First, add a new vertex r to Tr and the edge {ρTr , r}. Then
consider all edges in the resulting tree to be undirected. Let t : V o(T ) →
M denote the map given by t(v) = tr(v), for all v ∈ V o(T ). We claim
that for all {x, y, z} ∈

(X
3

)
, we have δ(x, y, z) = t(medT (x, y, z)), that

is, T is a representation of δ. To prove this, it suffices to consider two
cases. Suppose {x, y, z} ∈

(X
3

)
.

Case (a): {x, y, z} ⊆ X − {r}. Without loss of generality, δr(x, z) =
δr(y, z) = tr(u) and δr(x, y) = tr(v), where u and v are vertices of Tr,
and v is below or equal to u in Tr. In this case, t(medT (x, y, z)) equals
tr(v). By (M1) and since δ(x, z, r) = δ(y, z, r), we have δ(x, y, z) =
δ(x, y, r) = tr(v) = t(medT (x, y, z)). Thus, T is a representation of δ
in this case.
Case (b): r ∈ {x, y, z}, say r = z. If we denote by v the least com-
mon ancestor of x and y in Tr, then t(medT (x, y, z)) = tr(v). Hence
δ(x, y, r) = δr(x, y) = tr(v) = t(medT (x, y, r)). Thus, T is a represen-
tation of δ in this case, too.
�

We next elaborate on the relationship between Theorem 3.3 and
Theorem 5 in Gurvich (1984). As mentioned in Section 2, a symbolic
two-way map D :

(X
2

)
→ M can be seen as an edge-labelled graph

(H, D). Similarily, a symbolic three-way map δ :
(X
3

)
→ M can be

seen as an edge-labelled 3-hypergraph (H, δ), where by 3-hypergraph,
we mean that the edges of H are sets of three vertices (instead of two
for graphs). Within this context, the vertex set of a 3-hypergraph H
associated to a 3-way map δ is X, as in the case of two-way maps, and
the edge set of H is

(X
3

)
.

Gurvich (1984) uses as a starting point for his characterization the
equivalence, presented in Section 2, between symbolic 2-way maps that
can be represented by a rooted tree and edge-labelled graphs that do not
contain any subgraph isomorphic to the graphs Δ or Π (see Figure 2).
The idea underlylng Gurvich (1984, Theorem 5) is the following. From
an edge-labelled 3-hypergraph (H, δ) on X, we can pick an element
r ∈ X and consider the edge-labelled graph (H, δr) on X−{r}. It is then
possible to highlight three edge-labelled 3-hypergraph δ2, δ3, δ4 with four
vertices, that get transformed into edge-labelled graphs isomorphic to
Δ via that operation, and one edge-labelled 3-hypergraph π with five
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vertices, that gets transformed into an edge-labelled graph isomorphic
to Π. The equivalence between the representability of δ by a labelled
unrooted tree and the representability of δr by a labelled rooted tree
for all r ∈ X then leads to the conclusion that an edge-labelled 3-
hypergraph (H, δ) is representable if and only if it does not contain a
sub(hyper)graph isomorphic to any of δ2, δ3, δ4 and π.

As it turns out, (H, δ) contains a sub(hyper)graph isomorphic to
one of δ2, δ3, δ4 (resp. to π) if and only if δ does not satisfy (M1) (resp.
(M2)). This implies that Theorem 3.3 and Theorem 5 in Gurvich (1984)
are equivalent.

Finally, note that a similar result also appears in Grunewald,
Long, and Wu (2017). However, the arguments used by Grunewald et
al. (2017) do not rely on the projection of a three-way map to a two-
way map and of an unrooted tree to a rooted tree, as is the case both
here and in Gurvich (1984).

4. Three-Way Symbolic Ultrametrics

In the last section, we considered the problem of deciding when
a three-way symbolic map arises from a labelled unrooted tree. In this
section, we start to consider this problem for their rooted counterparts.
In particular, after defining the concept of a three-way symbolic ultra-
metric, we shall show that to determine whether or not a three-way
symbolic map is a symbolic ultrametric, it suffices to consider its re-
striction to sets of size five.

We begin by considering how to define a three-way symbolic ul-
trametric. If we consider 3 distinct leaves x, y, z of a rooted phylogenetic
tree T on X, then we can clearly identify two internal vertices of the
tree given by the set {lcaT (x, y), lcaT (x, z), lcaT (y, z)} (in contrast to
unrooted phylogenetic trees where we can identify only one, namely the
median of the 3 leaves). A natural approach to obtain a three-way sym-
bolic map δ from a labelled rooted tree T = (T, t) might therefore be
to take δ(x, y, z) to be the set {t(lcaT (x, y)), t(lcaT (x, z)), t(lcaT (y, z))},
for x, y, z ∈ X distinct. However, as can be seen in Figure 3, such a
map does not necessarily uniquely capture T . For this reason, we shall
consider instead maps to multisets.

To formalize this, let M = MM denote the set of multisets
{a, b, c} with a, b, c ∈ M . As it will be useful later on, we shall also
sometimes denote an element in M as a sum. So, for example, for the
element {a, a, b} ∈ M with a, b ∈ M , we sometimes also write 2a + b.

Now, given a labelled rooted tree T = (T, t) on X, we define the
three-way symbolic map
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Figure 3. Two labelled rooted trees on X = {1, 2, 3, 4, 5} with labelling maps t and
t′ on M = {A, B}, respectively, for which the sets {t(lcaT (x, y)), t(lcaT (x, z)),
t(lcaT (y, z))} and {t′(lcaT (x, y)), t′(lcaT (x, z)), t′(lcaT (y, z))} coincide, for any
three elements x, y, z ∈ X distinct.

δT :
(X
3

)
→ M by putting

δT (x, y, z) = {t(lcaT (x, y)), t(lcaT (x, z)), t(lcaT (y, z))}.

for all distinct x, y, z ∈ X. If for a three-way symbolic map δ :
(X
3

)
→ M

there exists a labelled rooted tree T = (T, t) on X such that δ =
δT , then we call δ a three-way symbolic ultrametric (on X). Thus,
intuitively, δ is a three-way symbolic ultrametric if it can be represented
by labelling a rooted tree on X in such a way that, for every 3-subset
{x, y, z} of X, δ(x, y, z) is the multiset consisting of the labels of the
least common ancestors for all pairs of elements in {x, y, z}. In addition,
we say that T is a representation for δ (or that T represents δ). We say
that T is discriminating if t(u) �= t(v), for every u �= v contained in the
same edge in T . Note that we can think of δ as a symbolic analogue
of a three-way perimeter map which arises from a weighted tree T by
taking, for any three leaves of T , the length of subtree spanned by the
those leaves (see e.g. Chepoi and Fichet, 2007). Also, note that by
(U1), δ must satisfy the following property:

Lemma 4.1 Let δ :
(X
3

)
→ M be a three-way symbolic ultrametric.

Then, for any three distinct elements x, y, z ∈ X, the number of distinct
elements in the multiset δ(x, y, z) is at most two.

We now turn our attention to showing that we can determine
whether or not a three-way symbolic map δ :

(X
3

)
→ M is a symbolic

ultrametric by restricting δ to subsets of X with size five. To do this,
we first need to introduce some additional notation. For a subset Y of
X of size four or more, let δ|Y denote the restriction of δ to

(Y
3
)
, that

is, the map obtained by restricting the map δ to the subset
(Y
3
)

of
(X
3

)
.

Note that if δ is a three-way symbolic ultrametric, then δ|Y is a three-
way symbolic ultrametric for all subsets Y ⊆ X with |Y | ≥ 4. Indeed,
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1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4

T1 : T2 : T3 : T4 :

T5 : T6 : T7 :

A A A A

A A A

B B B B C

B A

B

C

B

Figure 4. All possible discriminating labelled rooted trees Ti, 1 ≤ i ≤ 7, on
{1, 2, 3, 4}, up to a relabelling of the leaves.

Table 1. For 1 ≤ i ≤ 7 and M = {A, B, C}, the values of the map δ̂i represented
by the labelled rooted trees Ti in Figure 4. The trees Ti are given in terms of their
index i in the top row.

i 1 2 3 4 5 6 7
δ̂i(1, 2, 3) 3A 2A+B 2A+B 2A+B 3B A+2B 2B+C
δ̂i(1, 2, 4) 3A 2A+B 2A+B 2A+B 2A+B 3A 2A+C
δ̂i(1, 3, 4) 3A 3A 2A+B 2A+C 2A+B 2A+B 2A+B
δ̂i(2, 3, 4) 3A 3A 2A+B 2A+C 2A+B 2A+B 2A+B

if T is a representation of δ, then the subtree TY of T induced by Y
is a representation of δ|Y . Furthermore, we obtain a discriminating
representation of δ|Y by collapsing all edges of TY both of whose end
vertices have the same label.

We now consider symbolic ultrametrics on a set of size four. For
M = {A, B, C}, in Figure 4, we picture all possible discriminating
labelled rooted trees Ti, 1 ≤ i ≤ 7, on {1, 2, 3, 4} and in Table 1, we list
for all 1 ≤ i ≤ 7 the values of the map δ̂i :

(X
3

)
→ M that is represented

by Ti. As we can see from this table, all of the maps δ̂i except for δ̂3
capture Ti (in the sense that Ti is the unique labelled rooted tree on
{1, 2, 3, 4} that represents δ̂i). Now, for Y ⊆ X of size four, we say that
δ|Y is of type δ̂i, i ∈ {1, . . . , 7} if there exists a bijection between Y and
{1, 2, 3, 4} that induces a bijection between the image of δ|Y and the
image of δ̂i such that δ|Y and δ̂i coincide up to these bijections. Since
Table 1 is exhaustive, we have:
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Proposition 4.2 Suppose that |X| ≥ 4, that δ :
(X
3

)
→ M is a three-

way symbolic map, and that Y ⊆ X is a subset of size four. Then
δ|Y :

(Y
3
)

→ M is a three-way symbolic ultrametric on Y if and only if
there exists some i ∈ {1, . . . , 7} such that δ|Y is of type δ̂i. Moreover,
if i �= 3, the representation of δ|Y is unique.

We now turn our attention to symbolic ultrametrics on sets of
size five. In the last result, we have seen that a three-way symbolic
ultrametric on a set of size 4 may have more than one representation
by a labelled tree. However, as we shall now show this can not happen
for sets of size five.

Lemma 4.3 If Y is a set of size five and δ :
(Y
3
)

→ M is a three-way
symbolic ultrametric on Y , then δ has a unique discriminating repre-
sentation.

Proof. Suppose that δ is a three-way symbolic ultrametric on Y , and
that T is a discriminating representation of δ. Let D = DT :

(Y
2
)

→ M
be the symbolic ultrametric represented by T . By Theorem 2.1, it
suffices to show that if δ is also represented by a labelled tree T ′, then
DT ′ = DT .

Since δ is a three-way symbolic ultrametric on Y , there exists a
subset Y0 of Y with |Y0| = 4 such that δ|Y0 is not of type δ̂3. Thus,
by Proposition 4.2, DT ′ |Y0 = DT |Y0 . Hence, DT ′(x0, x) = DT (x0, x)
for all x ∈ Y0 where x0 is the unique element contained in Y − Y0,
since the value of DT ′(x0, x) is given by δ and DT |Y0 as follows. Let
Y0 = {x, y, z, u} and consider the multisets δ(x, y, x0) − DT |Y0(x, y),
δ(x, z, x0) − DT |Y0(x, z) and δ(x, u, x0) − DT |Y0(x, u) where for a mul-
tiset A with k ≥ 1 copies of some element a, we denote by A − a
the multiset obtained by removing one copy of a. If there exists a
unique element c ∈ M that belongs to all three of these sets, we have
DT ′(x0, x) = c. If two distinct elements of M share this property, this
implies DT ′(x0, y) = DT ′(x0, z) = DT ′(x0, u) �= DT ′(x0, x). We then
have DT ′(x0, y) = m(δ(y, z, x0)), and DT ′(x0, x) is the single element
of δ(x, y, x0) − {DT |Y0(x, y), DT ′(x0, y)}.
�

Note that, as the example in Table 2 shows, it is not true in
general that a three-way symbolic map δ that restricts to a three-way
symbolic ultrametric on all subsets Y of X of size four is a three-way
symbolic ultrametric on X. However, as mentioned above, using the
previous lemma we now show that considering sets of size five is enough
to ensure that this is the case.
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Table 2. For M = {A, B} and X = {1, 2, 3, 4, 5}, a three-way symbolic map
δ :

(
X
3

)
→ M which is not a three-way symbolic ultrametric on X but whose

restriction to any subset Y ⊂ X of size four is a three-way symbolic ultrametric on
Y .

δ(1, 2, 3) 2A+B δ(1, 4, 5) 2A+B
δ(1, 2, 4) 2A+B δ(2, 3, 4) 3A
δ(1, 2, 5) 3B δ(2, 3, 5) 2A+B
δ(1, 3, 4) 3A δ(2, 4, 5) 2A+B
δ(1, 3, 5) 2A+B δ(3, 4, 5) A+2B

Theorem 4.4 Suppose that |X| ≥ 5 and that δ :
(X
3

)
→ M is a three-

way symbolic map. Then, δ is a three-way symbolic ultrametric if and
only if δ|Y is a three-way symbolic ultrametric for all Y ⊆ X of size
five.
Proof. The fact that a three-way symbolic ultrametric on X restricts
to such an ultrametric on all subsets of X of size five is clear.

Conversely, assume that δ|Y is a three-way symbolic ultrametric
for all Y ⊆ X of size five. For such a set Y , we denote by TY = (TY , tY )
the unique (by Lemma 4.3) discriminating labelled tree that represents
δ|Y , and by DY the symbolic ultrametric that is represented by TY .

Clearly, if there exists a map D :
(X
2

)
→ M such that, for all

subsets Y ⊆ X of size five, the restriction of D to
(Y
2
)

coincides with DY ,
then D satisfies δ(x, y, z) = {D(x, y), D(x, z), D(y, z)}, for all x, y, z ∈
X pairwise distinct. Moreover, since DY is a symbolic ultrametric on
any subset Y ⊆ X of size five, and given that the property of being a
symbolic ultrametric is based on a 4-point condition, we have that such
a map D, if it exists, is also a symbolic ultrametric. Thus, if D exists,
then δ is a three-way symbolic ultrametric.

To show that D exists, assume for contradiction that there exist
x and y in X and two distinct subsets Y1 and Y2 of X of size five, both
containing x and y, such that DY1(x, y) �= DY2(x, y). We may assume
without loss of generality that I = Y1 ∩ Y2 has size four. Moreover, we
claim that x, y, Y1 and Y2 can be chosen in such a way that δ|I is not
of type δ̂3, as defined in Table 1.

To prove this claim, consider the case where δ|I is of type δ̂3
(otherwise, the claim trivially holds). Assume Y1 = {x, y, z, t, u1} and
Y2 = {x, y, z, t, u2}, which implies I = {x, y, z, t}. Both the subtree
of TY1 induced by I and the subtree of TY2 induced by I are of the
form T3 in Figure 4, and their underlying phylogenetic trees are not
isomorphic. We can assume that one has cherries {x, y} and {t, z} and
the other has cherries {x, z} and {t, y}. Then, we have not only that
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DY1(x, y) �= DY2(x, y), but also that DY1(x, z) �= DY2(x, z), DY1(z, t) �=
DY2(z, t), and DY1(y, t) �= DY2(y, t). Moreover, it is easy to check that
there exists a subset Y ∗ ⊂ I of size three such that neither δ|Y ∗∪{u1}
nor δ|Y ∗∪{u2} is of type δ̂3.

Since Y ∗ is a subset of I of size three and, in view of the four
inequalities listed above, there exists two elements x′, y′ ∈ Y ∗ such that
DY1(x′, y′) �= DY2(x′, y′). If we denote by Y ′ the set Y ∗ ∪ {u1} ∪ {u2},
we have that both Y ′ ∩ Y1 and Y ′ ∩ Y2 have size four, and that at least
one of DY ′(x′, y′) �= DY1(x′, y′) or DY ′(x′, y′) �= DY2(x′, y′) holds. If the
first inequality holds, the claim is then satisfied for x′, y′, Y ′ and Y1.
Otherwise, it is satisfied for x′, y′, Y ′ and Y1, which completes the proof
of the claim.

Now, in light of the claim, the representation TI of δ|I is unique,
and so is the symbolic ultrametric DI that is represented by TI . More-
over, DI is precisely the restriction of DY1 to I, and the restriction of
DY2 to I. In particular, we have D(x, y) = DY1(x, y) and D(x, y) =
DY2(x, y), which contradicts DY1(x, y) �= DY2(x, y).
�

5. A Five-Point Characterization of Three-Way
Symbolic Ultrametrics

We now focus on using the results in the previous two sections
to derive conditions for characterizing three-way symbolic ultrametrics
that are analogous to conditions (U1) and (U2) for symbolic ultramet-
rics.

In the following, we shall consider expressions of the form∑
m∈M αmm, where αm is a real number, which arise when we take lin-

ear combinations of multisets in M. We shall say that such an expres-
sion

∑
m∈M αmm is valid for M if the coefficient for each element in M is

contained in N. For example, for M = {a, b}, if S1 = 2a+b, S2 = 2b+a
and S3 = 3a are multisets in M, then we have 1

3(S1+S2) = a+b, which
is valid for M , but S3 − S1 = a − b and 1

2(S1 + S3) = 5
2a + 1

2b which are
not valid for M .

Now, suppose that δ :
(X
3

)
→ M is a three-way symbolic map

where |X| ≥ 5. Let Y = {x, y, z, u, v} be a subset of X. Let νY (δ)
denote the vector

(δ(x, y, z), δ(x, y, u), . . . , δ(z, u, v)).

In addition, suppose that DY :
(Y
2
)

→ M is a map such that

δ(a, b, c) = {DY (a, b), DY (a, c), DY (b, c)}
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for all a, b, c ∈ Y , and let μY (δ) denote the vector

(DY (x, y), DY (x, z), . . . , DY (u, v)).

By definition of DY , it is straight-forward to check that AμY (δ) =
νY (δ), where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 1 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0
1 0 0 1 0 0 1 0 0 0
0 1 1 0 0 0 0 1 0 0
0 1 0 1 0 0 0 0 1 0
0 0 1 1 0 0 0 0 0 1
0 0 0 0 1 1 0 1 0 0
0 0 0 0 1 0 1 0 1 0
0 0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that in Hermann et al. (2012) it was shown that the matrix A is
invertible with inverse

A−1 = 1
6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 2 2 −1 −1 −1 −1 −1 −1 2
2 −1 −1 2 2 −1 −1 −1 2 −1

−1 2 −1 2 −1 2 −1 2 −1 −1
−1 −1 2 −1 2 2 2 −1 −1 −1
2 −1 −1 −1 −1 2 2 2 −1 −1

−1 2 −1 −1 2 −1 2 −1 2 −1
−1 −1 2 2 −1 −1 −1 2 2 −1
−1 −1 2 2 −1 −1 2 −1 −1 2
−1 2 −1 −1 2 −1 −1 2 −1 2
2 −1 −1 −1 −1 2 −1 −1 2 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Consider the product μY (δ) = A−1νY (δ). Then, as the rows of A−1

are indexed by pairs of distinct elements in Y , it is straight-forward
to check by considering the {p, q}th row of A−1 (for p �= q ∈ Y ) and
putting {e, f, g} = Y − {p, q} and

SY
p,q(δ) = 1

6
(2(δ(p, q, e) + δ(p, q, f) + δ(p, q, g) + δ(e, f, g))

−
∑

a,b∈Y −{p,q}
(δ(p, a, b) + δ(q, a, b))),

that SY
p,q = {DY (p, q)}. Defining SY

p,q as above for Y ⊆ X with |Y | = 5
and p �= q ∈ Y we also have:
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Proposition 5.1 Suppose that |X| ≥ 5, that δ :
(X
3

)
→ M is a three-

way symbolic map, and that Y ⊆ X has size five. There exists a map
DY :

(Y
2
)

→ M such that δ(a, b, c) = {DY (a, b), DY (a, c), DY (b, c)} for
all a, b, c ∈ Y if and only if for all p, q ∈ Y distinct, SY

p,q(δ) is valid for
M , in which case SY

p,q(δ) is a singleton multiset.

Proof. Suppose first that the map DY exists. Without loss of generality
we may assume that DY = DY . In view of the discussion preceding
the proposition, it follows that SY

p,q(δ) is valid for M for all p, q ∈ Y

distinct, as SY
p,q(δ) = {DY (p, q)}.

To see the converse, assume that SY
p,q(δ) is valid for M for all

p �= q ∈ Y . Fix p and q. We claim that SY
p,q(δ) is a singleton multiset.

To see this, put A = 2(δ(p, q, e) + δ(p, q, f) + δ(p, q, g) + δ(e, f, g)) and
B =

∑
a,b∈Y −{p,q}(δ(p, a, b) + δ(q, a, b)). Then since SY

p,q(δ) is valid for
M , every element in B must also be an element in A. Hence, SY

p,q(δ)
must contain 1

6 |A − B| = 1 element as |A| = 24 and |B| = 18. This
proves the claim.

Now, it is straight forward to see that if SY
p,q(δ) = {sY

p,q}, for
p �= q ∈ Y , then the map DY :

(Y
2
)

→ M defined by putting DY (p, q) =
sY

p,q(δ), for all p �= q ∈ Y , satisfies the stated property.
�

We now present conditions for characterizing when a three-way
symbolic map is a three-way symbolic ultrametric. For Σ ∈ M, we
define the elements m(Σ) and n(Σ) of M as follows:

• If Σ contains a single element A ∈ M repeated three times, we
put m(Σ) = n(Σ) = A.

• If Σ contains two distinct elements, we define m(Σ) as the element
of Σ appearing twice and n(Σ) as the element appearing only once.

• If Σ contains three distinct elements, we put m(Σ) = n(Σ) = ∅.

Note that if Σ contains two or fewer distinct elements, then Σ =
{m(Σ), m(Σ), n(Σ)}.

Theorem 5.2 Suppose that |X| ≥ 5 and that δ :
(X
3

)
→ M is a three-

way symbolic map. Then δ is a three-way symbolic ultrametric if and
only if the following hold:

(P1) For all subsets Y ⊆ X of size five and all x, y ∈ Y distinct, SY
x,y(δ)

is valid for M .
(P2) For all pairwise distinct x, y, z ∈ X, δ(x, y, z) contains at most

two distinct elements.



Symbolic Tree-Maps and Ultrametrics

(P3) For all pairwise distinct x, y, z, u ∈ X with δ(x, y, z) = δ(y, z, u) �=
δ(x, y, u) = δ(x, z, u) holding, we have m(δ(x, y, z)) = m(δ(x, y, u)).

Proof. Assume first that δ is a three-way symbolic ultrametric. By
Theorem 4.4 and Proposition 5.1 it follows that Properties (P1) and
(P2) must hold. To see that Property (P3) holds too let {x, y, z, u} ∈(X
4

)
be such that δ(x, y, z) = δ(y, z, u) �= δ(x, y, u) = δ(x, z, u). Since

δ|{x,y,z,u} is a three-way symbolic ultrametric, Proposition 4.2 combined
with Table 1 implies that δ|{x,y,z,u} is either of type δ̂3 and δ̂5. Clearly,
m(δ̂i(x, y, z)) = m(δ̂i(x, y, u)) holds for i = 3, 5 and, so, Property (P3)
follows.

Conversely, assume that δ satisfies Properties (P1) – (P3). Con-
sider a subset Y ⊆ X of size five. By Proposition 5.1, there exists a map
DY :

(Y
2
)

→ M such that δ(x, y, z) = {DY (x, y), DY (x, z), DY (y, z)} for
all x, y, z ∈ Y . We claim that DY is a symbolic ultrametric. For this it
suffices to show that DY satisfies Property (U2) as Property (U1) is a
direct consequence of Property (P1).

To see that DY satisfies Property (U2), assume for contradiction
that there exist pairwise distinct x, y, z, u ∈ Y such that DY (x, y) =
DY (y, z) = DY (z, u) �= DY (z, x) = DY (x, u) = DY (u, y). Put A =
DY (x, y) and B = DY (z, x). Then δ(x, y, z) = δ(y, z, u) = 2A + B �=
A + 2B = δ(x, y, u) = δ(x, z, u). Since, m(δ(x, y, z)) = A �= B =
m(δ(x, y, u)) also holds this is impossible in view of Property (P3).
Thus, DY also satisfies Property (U2) and, so, is a symbolic ultrametric,
as claimed.

Since DY is a symbolic ultrametric, there exists a labelled rooted
tree T that represents DY . Combined with the definition of DY it
follows that T also represents δ|Y . Thus, δ|Y is a three-way symbolic
ultrametric and, so, δ|Y is a three-way symbolic ultrametric for all sub-
sets Y ⊆ X with |Y | = 5. By Theorem 4.4, it follows that δ is a
three-way symbolic ultrametric.
�

Note that Properties (P1) – (P3) are independent of each other.
Indeed, that Property (P2) is independent of Properties (P1) and (P3)
and that Property (P3) is independent of Properties (P1) and (P2)
is a direct consequence of the fact that Properties (U1) and (U2) are
independent of each other.

To see that Property (P1) is independent of Properties (P2) and
(P3), consider the three-way symbolic map δ :

(X
3

)
→ M{A,B} defined,

for all x, y, z ∈ X, by putting δ(x, y, z) = 2A + B. The map δ always
satisfies (P2) and (P3), but if |X| ≥ 5, δ does not satisfy (P1).
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6. Reconstructing Three-Way Symbolic Ultrametric
Representations Using Triplets

In this section, we are interested in determining when a three-
way symbolic map δ on X is a tree-map or a symbolic ultrametric.
Clearly, using the conditions given in Theorem 5.2 this can be done by
examining every subset of X with size five. However, we now show how
to do this using a triplet-based approach, which essentially reduces the
problem to considering subsets of X of size three.

Recall that a triplet is a binary phylogenetic tree on three leaves.
By xy|z we denote the triplet with leaf-set {x, y, z} which has x, y
adjacent to the same vertex in the tree. For T a phylogenetic tree
on X and x, y, z ∈ X, we say that T displays the triplet xy|z if
lcaT (x, z) = lcaT (y, z) �= lcaT (x, y). To keep notation at bay, we some-
times also say that a labelled tree T = (T, t) on X displays a triplet r
if r is displayed by T .

In Semple and Steel (2003, Section 7.6), a triplet-based approach
is described for deciding whether or not a two-way symbolic map δ is a
symbolic ultrametric or not and, if it is, for building a labelled tree which
represents δ. This approach is based on the BUILD algorithm, that was
presented under that name in Aho et al. (1981). Using the results in
Section 3, the BUILD algorithm also allows us to check if a three-way
symbolic map is a tree-map using triplets as follows. Suppose δ :

(X
3

)
→

M is a three-way symbolic map. Pick any r ∈ X. Then, using the
BUILD-based approach, we can check whether or not the map δr defined
in Section 3. is a symbolic ultrametric by taking the set of triplets xy|z
with x, y, z ∈ X distinct, for which δr(x, y) �= δr(x, z) = δr(y, z) holds
as input to BUILD. If this is not the case, then by Lemma 3.1, δ is not a
three-way symbolic tree-map. Otherwise, if (T, t) is the representation
of δr returned by BUILD, then we can simply check whether or not this
leads to a representation of δ by attaching the leaf r to the root of T .
If this is possible then δ is a three-way symbolic tree-map, otherwise it
is not.

We now turn our attention to three-way symbolic ultrametrics.
We begin by presenting a key link between triplets and such maps whose
proof is straight forward. Denote the underlying set of a multiset A by
A.
Proposition 6.1 Let T = (T, t) be a discriminating labelled tree. For
x, y, z ∈ X distinct:
(T1) If xy|z is a triplet displayed by T , then t(lcaT (x, z)) = t(lcaT (y, z)) =

m(δT (x, y, z)) and t(lcaT (x, y)) = n(δT (x, y, z))
(T2) If T does not display any triplet on {x, y, z}, then |δT (x, y, z)| = 1.
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Corollary 6.2 Up to isomorphism, any labelled tree T can be uniquely
reconstructed from δT and the set of triplets displayed by T .

Proof. Put T = (T, t) and δ = δT . Let t : V o(T ) → M and let R
denote the set of triplets displayed by T . Define a map Dδ :

(X
2

)
→ M

as follows. Suppose x, y ∈ X distinct. If there exists some z ∈ X−{x, y}
such that no triplet on {x, y, z} is contained in R, then define Dδ(x, y)
to be the element in δT (x, y, z). If there exists some z ∈ X − {x, y}
such that xy|z ∈ R then put Dδ(x, y) = n(δT (x, y, z)) and if xz|y ∈ R
then put Dδ(x, y) = m(δT (x, y, z)). In view of Proposition 6.1, the map
Dδ is clearly well-defined.

The corollary now follows in view of Theorem 2.1 as Dδ is equal
to the symbolic ultrametric DT that is represented by T (as Dδ(x, y) =
t(lca(x, y)) = DT (x, y) clearly holds for all x, y ∈ X distinct).
�

In light of Corollary 6.2, it is of interest to understand when, for a
labelled tree T , the set of triplets displayed by T can be obtained from
δT . The tree T3 in Figure 4, suggests that this is not always possible.
In fact, as we shall show, it suffices to exclude a special type of labelled
tree which we define next.

A fixed-cherry tree on X (with cherry {x1, x2}), |X| ≥ 4, is a
labelled tree T = (T, t) on X such that the root ρT of T has two children
v and w with t(v) = t(w) �= t(ρT ), v is the parent of two elements x1 and
x2 of X, and w the parent of all elements in X −{x1, x2}. For example,
the tree T3 in Figure 4 is a fixed-cherry tree on X = {1, 2, 3, 4} with
cherry {1, 2}. Note that if T = (T, t) is a fixed-cherry tree with cherry
{x1, x2} and x, y, z ∈ X distinct, then δT (x, y, z) = {t(w), t(w), t(w)} if
neither x1 nor x2 belong to {x, y, z} and δ(x, y, z) = {t(ρT ), t(ρT ), t(w)}
else. We call a three-way symbolic map δ :

(X
3

)
→ M that satisfies

these conditions for some x1 �= x2 ∈ X a fixed cherry map (with cherry
{x1, x2}). The following observation is straight-forward to check.

Lemma 6.3 Suppose that |X| ≥ 5 and that δ is a three-way symbolic
map on X. Then δ can be represented by a fixed-cherry tree on X
with cherry {x1, x2} if and only if δ is a fixed-cherry map with cherry
{x1, x2}.

Note that a triplet xy|z with x, y, z ∈ X is displayed by a fixed-
cherry tree on X with cherry {x1, x2} if and only if either {x, y} =
{x1, x2} or z ∈ {x1, x2}, and x, y ∈ X − {x1, x2} hold. In particular,
if |X| > 4 and δ is a fixed-cherry map, then the cherry can be easily
identified from δ, and therefore also all of the triplets displayed by T .
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We now consider how to obtain the triplets displayed by a labelled
tree T in case T is not a fixed-cherry tree. We start with a useful lemma.
Suppose T = (T, t) is a labelled tree and Y ⊆ X, |Y | ≥ 4, is such that
δT |Y has a unique discriminating representation. Then we denote that
representation by TY = (TY , tY ).

Lemma 6.4 Let T be a discriminating labelled tree on X and assume
that Y ⊆ X is such that δT |Y has a unique discriminating representa-
tion. If t is a triplet displayed by TY , then t is displayed by T .

Proof. Put δ = δT and T = (T, t). It suffices to note that TY is obtained
from T by first taking the subtree T ′ of T induced by Y , and then
collapsing edges of T ′ both of whose end vertices have the same label
under the restriction t′ of t to V (T ′). Clearly, TY is a discriminating
representation of δ|Y . By assumption, it follows that TY is the unique
discriminating representation of δ|Y .

It is well-known (Semple and Steel, 2003, Theorem 6.4.1) that
the set R of triplets displayed by T ′ is contained in the set of triplets
displayed by T . Since the process of collapsing edges of T ′ removes
triplets from R, but does not add any, it follows that a triplet displayed
by TY is also displayed by T .
�

We now present the main result of this section.

Theorem 6.5 Suppose that |X| ≥ 4 and that T is a labelled tree on
X that is not a fixed-cherry tree. Then, for all x, y, z ∈ X distinct, T
displays the triplet xy|z if and only if one of the following two properties
holds:
(P1) There exists some u ∈ X such that δT (x, u, z) = δT (y, u, z) �=

δT (x, y, u) and if |δT (x, y, u)| = 1 then δT (x, y, u) �= δT (x, y, z).
(P2) There exists some u ∈ X such that |{δT (x, u, z), δT (y, u, z),

δT (x, y, u)}| = 3 and m(δT (x, u, z)) = m(δT (y, u, z)) �= m(δT (x, y, u)).

Proof. Put T = (T, t) and δ = δT . Assume first that x, y, z ∈ X
distinct are such that T displays the triplet xy|z. Put v = lca(x, z) and
w = lca(x, y). We proceed using a case-analysis on the structure of T .
Since T is not a fixed-cherry tree we need to consider the following (not
necessarily disjoint) cases: (a): w is not a child of v, (b): v is not the
root of T or has outdegree three or more, (c): w has a child that is
neither x nor y, and (d): there exists a vertex v0 on the path from v to
z with t(v0) �= t(w).

Case (a): Consider the parent v0 of w, and an element u in X
that is below v0 but not below w (see Figure 5(a)). Since T is a discrim-
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Figure 5. Cases (a)-(d) for the case-analysis carried out in the proof of Theorem 6.5.
See text for details.

inating representation for δT , we have t(v0) �= t(w). Hence, δ(x, u, z) =
δ(y, u, z) = {t(v0), t(v), t(v)} and δ(x, y, u) = {t(w), t(v0), t(v0)}. Con-
sequently, δ(x, u, z) = δ(y, u, z) �= δ(x, y, u). Note that if t(v) = t(w),
then δ(x, y, z) = {t(w), t(v), t(v)} and, so, |δ(x, y, z)| = 1. But then
δ(x, y, u) �= δ(x, y, z) as |δ(x, y, u)| = 2. Hence, the second condi-
tion in Property (P1) holds, too. So assume that t(w) �= t(v). Then
|δ(x, y, u)| = 2 and so the second condition in Property (P1) does not
apply.

Case (b): Consider an element of u ∈ X such that v0 := lca(u, z) =
lca(u, x) (see Figure 5(b)). If w is not a child of v then Property (P1)
follows by Case (a). So assume that w is a child of v. Then t(v) �=
t(w) as T is a discriminating representation for δT . Since δ(x, u, z) =
δ(y, u, z) = {t(v), t(v0), t(v0)} and δ(x, y, u) = {t(w), t(v0), t(v0)} we
have δ(x, u, z) = δ(y, u, z) �= δ(x, y, u). Since the choice of v0 implies
that |δ(x, y, u)| �= 1 the second condition in Property (P1) does not
apply. Hence, Property (P1) is also satisfied in this case.

Case (c): Then there is some u ∈ X below w that is neither x
nor y. We may assume without loss of generality that w = lca(y, u).
Put v0 = lca(x, u) (see Figure 5(c)). Note that v0 = w may hold.
Clearly, δ(x, u, z) = {t(v0), t(v), t(v)}, δ(y, u, z) = {t(w), t(v), t(v)} and
δ(x, y, u) = {t(v0), t(w), t(w)}. If v0 �= w then δ(y, u, z) �= δ(x, u, z) �=
δ(x, u, y). Hence, |{δ(y, u, z), δ(x, u, z), δ(x, u, y)}| = 3. Since m(δ(x, u,
z)) = t(v) = m(δ(y, u, z)) and m(δ(x, y, u) = t(w), Property (P2)
follows. So assume that v0 �= w. Then δ(y, u, z) = δ(x, u, z) =
{t(w), t(v), t(v)} and δ(y, u, x) = {t(w), t(w), t(w)}. In view of Prop-
erty (P1) holding if Case (a) applies, we may assume without loss of gen-
erality that w is a child of v. Since T is a discriminating representation
of δT we have t(v) �= t(w). Hence, δ(y, u, z) = δ(x, u, z) �= δ(x, y, u).
Since |δ(x, y, z)| = 1 and |δ(x, y, z)| �= 1, Property (P1) follows in this
case, too.
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Case (d): Let u ∈ X such that v0 = lca(z, u) (see Figure 5(d)).
Then δ(x, u, z) = δ(y, u, z) = {t(v0), t(v), t(v)} and δ(x, y, u) = {t(w),
t(v), t(v)}. If t(w) = t(v0) we have δ(x, u, z) = δ(y, u, z) = δ(x, y, u). In
view of Property (P1) holding if Case (a) applies, we may assume with-
out loss of generality that w is a child of v. Hence, t(w) �= t(v) because
T is a discriminating representation for δ. But then |δ(x, y, u)| �= 1 and,
so, the second condition in Property (P1) does not apply.

Conversely, let x, y, z ∈ X distinct. Assume first that there exists
some u ∈ X−{x, y, z} such that Property (P1) is satisfied for the name-
sakes of u, x, y, and z. Consider the restriction δ′ of δ to {x, y, u, z}.
Let T ′ = (T ′, t′) denote a discriminating representation of δ′. To see
that xy|z is displayed by T we claim first that T ′ is the unique dis-
criminating representation of δ′. To see the claim, we show that xy|z
is displayed by T ′. Assume for contradiction that the triplet xy|z is
not displayed by T ′. In view of the first condition in Property (P1),
the outdegree of the root ρT ′ cannot be four. Hence, one of the triplets
x|yz and y|xz must be displayed by T ′ and T ′ is either resolved or un-
resolved. Assume first that T ′ is resolved. Then a straight forward case
analysis concerned with adding u to the triplet x|yz implies that that
triplet cannot be displayed by T ′. Swapping the roles of x and y in that
argument also implies that the triplet y|xz cannot be displayed by T ′

either. Thus, T ′ must be unresolved and, so, either ρT ′ has outdegree
three or one of the children of ρT ′ has outdegree three.

If T ′ displays the triplet x|yz and the outdegree of ρT ′ is three
then |δ(y, u, z)| = 1. Hence, δ(x, y, u) = δ(x, y, z) in view of the sec-
ond condition in Property (P1) which is impossible. Thus, one of the
children of ρT ′ has outdegree three. But this is impossible in view of
the first condition in Property (P1). Similar arguments imply that the
triplet displayed by T ′ cannot be y|xz either which is impossible. Thus,
T ′ must display the triplet xy|z. Consequently, either ρT ′ is the parent
of u and z or x, y, and u have the same parent. In either case it follows
that δ′ cannot be of type δ̂3. Thus, T ′ is the unique discriminating
representation of δ′, as claimed. By Lemma 6.4, it follows that xy|z
must be displayed by T .

Assume next that there exists some u ∈ X − {x, y, z} such that
Property (P2) is satisfied for the namesakes of u, x, y, and z. Consider
again the restriction δ′ of δ to {x, y, u, z}. Then δ′ must have a repre-
sentation T ′ = (T ′, t′). In view of the first condition of Property (P2),
T ′ must be discriminating. A straight forward case analysis implies
that δ′ cannot be of type δ̂3. Thus, T ′ is the unique discriminating
representation of δ′.
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In view of Table 1, there must exist at least two subsets Y
and Y ′ of {x, y, z, u} of size three satisfying δ(Y ) = δ(Y ′). Since
|{δ(x, u, z), δ(y, u, z), δ(x, y, u)}| = 3, it follows that {x, y, z} must be
one of these subsets. If δ(x, y, z) = δ(x, y, u), then DT (x, u) = m(δ(x, u,
z)) and DT (y, u) = m(δ(y, u, z)) must hold where DT is the symbolic
ultrametric represented by T . Indeed, since δ(x, y, u) = δ(x, y, z), one
of the following two cases must hold: (α) DT (x, z) = DT (x, u) and
DT (y, z) = DT (y, u) and (β) DT (x, z) = DT (y, u) and DT (y, z) =
DT (x, u). However Case (β) implies δ(x, z, u) = δ(y, z, u), which is im-
possible in view of the assumption that {δ(x, y, u), δ(y, z, u), δ(x, z, u)}
has size three. Thus, Case (α) must hold. But then DT (x, u) =
m(δ(x, u, z)) and DT (y, u) = m(δ(y, u, z)), as required.

Since, by assumption, we also have m(δ(x, u, z)) = m(δ(y, u, z))
we obtain DT (x, u) = DT (y, u). Since DT (x, u) and DT (y, u) are both
elements in the multiset δ(x, y, u), we obtain m(δ(x, u, z)) = DT (x, u) =
m(δ(x, y, u)), which is impossible in view of (P2). Thus, we either have
δ(x, y, z) = δ(x, u, z) or δ(x, y, z) = δ(y, u, z). Note that the roles of
x and y are interchangeable here, so we may assume without loss of
generality that δ(x, y, z) = δ(y, u, z).

Using similar arguments as before, we have DT (x, z) = m(δ(x, u,
z)), DT (x, y) = m(δ(x, u, y)), and DT (y, z) = m(δ(y, u, z)) in this case.
By Property (P2), it follows that DT (x, z) = DT (y, z) �= DT (x, y).
Thus, xy|z is displayed by T ′ and, by Lemma 6.4, xy|z is also displayed
by T .
�

We now explain how, as a direct consequence of Lemma 6.3 and
Theorem 6.5, it is possible to decide whether or not a three-way sym-
bolic map δ on a set X with |X| ≥ 5 is a three-way symbolic ultrametric
by considering triplets and, if so, construct the labelled tree T which
represents δ.

First, check if δ is a fixed-cherry map. If this is the case, then δ
is a three-way symbolic ultrametric and T can be easily constructed. If
not, then compute the set Tr(δ) of triplets of X satisfying Properties
(P1) or (P2), and use it as input to the BUILD algorithm. If there is
no tree that display all the triplets in Tr(δ), then δ is not a three-way
symbolic ultrametric. Otherwise, using the tree T that is constructed
from the BUILD algorithm and the map δ, it is straight-forward to
decide if there is a labelling map t for T such that (T, t) represents δ.
If this is the case, then δ is a three-way symbolic ultrametric which has
the computed labelled tree (T, t) as a representation, otherwise it is not.

Note that BUILD may return a tree T from Tr(δ) even if the map
δ is not a three-way symbolic ultrametric. For example, let M = {A, B}
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and consider the map δ :
(X
3

)
→ M where X = {1, 2, 3, 4, 5}, and

δ(x, y, z) = 3A if {x, y, z} = {3, 4, 5}, and δ(x, y, z) = 2A+B otherwise.
Although the map is clearly not representable by a labelled tree, we have
Tr(δ) = {34|1, 34|2, 35|1, 35|2, 45|1, 45|2}, and it is easy to check that
there exists a phylogenetic tree on X whose set of displayed triplets is
Tr(δ).

7. Conclusion

We conclude by presenting some possible future directions:

• In Chepoi and Fichet (2007), some relationships are derived be-
tween three-way and two-way dissimilarities in general. It would
be interesting to see which of these relationships might be extend-
able to symbolic three-way maps.

• We define three-way tree-maps in terms of medians in leaf-labelled
trees. Can any of our results be extended to median networks
(Bandelt et al., 1995)? Also, can our results concerning three-
way symbolic ultrametrics be extended to rooted phylogenetic
networks? (cf. e.g. Huber and Scholz, 2018)

• We can clearly consider generalizations of three-way symbolic
maps to k-way symbolic maps, k ≥ 2 (see e.g Chepoi and Fichet,
2007; Deza and Rosenberg, 2000; Warrens, 2010), and therefore
generalize the notion of a three-way symbolic ultrametric in the
natural way. If δ is a k-way symbolic map and its restriction to
every k + 2 subset is a k-way symbolic ultrametric, then is δ a
symbolic ultrametric?

• In Hellmuth et al. (2013), an application of symbolic ultrametrics
to constructing genome-based phylogenies is presented. It would
be interesting to see if this application could be extended to three-
way maps. Note that results presented in Levy et al. (2006) might
be relevant in this context. Also, it would be interesting to develop
associated algorithms such as those in Lafond and El-Mabrouk
(2015), for three-way symbolic maps.
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