1,121 research outputs found
Modern Aerocapture Guidance to Enable Reduced-Lift Vehicles at Neptune
Aerocapture is covered extensively in the literature as means of achieving orbital insertion with dramatic mass-saving results compared to fully-propulsive systems. One of the primary obstacles facing aerocapture is the inherent uncertainty associated with passing through a planets upper atmosphere. In-flight dispersions due to delivery errors, environment variables, and aerodynamic performance impose a large flight envelope. System studies for aerocapture often select high lift-to-drag ratios to compensate for these uncertainties. However, modern predictor-corrector guidance strategies have shown promise in recent years to provide robust control schemes in-situ. These algorithms do not rely on a pre-calculated reference trajectory and instead employ a numerical optimizer to continuously solve nonlinear equations of motion each guidance cycle. Numerical predictor-corrector strategies may provide considerable accuracy over heritage guidance schemes. The goal of this study is reproduce a landmark study of Neptune aerocapture and apply modern guidance to illustrate relative performance improvements and cost-saving potential. Capture constraints based on the theoretical corridor width are considered. Results indicate that heritage vehicles with moderate lift-to-drag ratios, lower than previous studies have indicated, may prove viable for aerocapture at Neptune
Comment on "Anomalous Thermal Conductivity of Frustrated Heisenberg Spin Chains and Ladders"
In a recent letter [Phys. Rev. Lett. 89, 156603 (2002); cond-mat/0201300],
Alvarez and Gros have numerically analyzed the Drude weight for thermal
transport in spin ladders and frustrated chains of up to 14 sites and have
proposed that it remains finite in the thermodynamic limit. In this comment, we
argue that this conclusion cannot be sustained if the finite-size analysis is
taken to larger system sizes.Comment: One page REVTeX4, 1 figure. Published version (minor changes
Thermal conductivity of the one-dimensional Fermi-Hubbard model
We study the thermal conductivity of the one-dimensional Fermi-Hubbard model
at finite temperature using a density matrix renormalization group approach.
The integrability of this model gives rise to ballistic thermal transport. We
calculate the temperature dependence of the thermal Drude weight at half
filling for various interactions and moreover, we compute its filling
dependence at infinite temperature. The finite-frequency contributions
originating from the fact that the energy current is not a conserved quantity
are investigated as well. We report evidence that breaking the integrability
through a nearest-neighbor interaction leads to vanishing Drude weights and
diffusive energy transport. Moreover, we demonstrate that energy spreads
ballistically in local quenches with initially inhomogeneous energy density
profiles in the integrable case. We discuss the relevance of our results for
thermalization in ultra-cold quantum gas experiments and for transport
measurements with quasi-one dimensional materials
Large magnetic thermal conductivity induced by frustration in low-dimensional quantum magnets
We study the magnetic field-dependence of the thermal conductivity due to
magnetic excitations in frustrated spin-1/2 Heisenberg chains. Near the
saturation field, the system is described by a dilute gas of weakly-interacting
fermions (free-fermion fixed point). We show that in this regime the thermal
conductivity exhibits a non-monotonic behavior as a function of the ratio
between second and first nearest-neighbor antiferromagnetic
exchange interactions. This result is a direct consequence of the splitting of
the single-particle dispersion minimum into two minima that takes place at the
Lifshitz point . Upon increasing from zero, the inverse
mass vanishes at and it increases monotonically from zero for
. By deriving an effective low-energy theory of the dilute gas
of fermions, we demonstrate that the Drude weight of the thermal
conductivity exhibits a similar dependence on near the saturation
field. Moreover, this theory predicts a transition between a two-component
Tomonaga-Luttinger liquid and a vector-chiral phase at a critical value
that agrees very well with previous density matrix
renormalization group results. We also show that the resulting curve is in excellent agreement with exact diagonalization (ED) results.
Our ED results also show that has a pronounced minimum at
and it decreases for sufficiently large at lower
magnetic field values. We also demonstrate that the thermal conductivity is
significantly affected by the presence of magnetothermal coupling
Thermal transport of the XXZ chain in a magnetic field
We study the heat conduction of the spin-1/2 XXZ chain in finite magnetic
fields where magnetothermal effects arise. Due to the integrability of this
model, all transport coefficients diverge, signaled by finite Drude weights.
Using exact diagonalization and mean-field theory, we analyze the temperature
and field dependence of the thermal Drude weight for various exchange
anisotropies under the condition of zero magnetization-current flow. First, we
find a strong magnetic field dependence of the Drude weight, including a
suppression of its magnitude with increasing field strength and a non-monotonic
field-dependence of the peak position. Second, for small exchange anisotropies
and magnetic fields in the massless as well as in the fully polarized regime
the mean-field approach is in excellent agreement with the exact
diagonalization data. Third, at the field-induced quantum critical line between
the para- and ferromagnetic region we propose a universal low-temperature
behavior of the thermal Drude weight.Comment: 9 pages REVTeX4 including 5 figures, revised version, refs. added,
typos correcte
Coherent spin-current oscillations in transverse magnetic fields
We address the coherence of the dynamics of spin-currents with components
transverse to an external magnetic field for the spin-1/2 Heisenberg chain. We
study current autocorrelations at finite temperatures and the real-time
dynamics of currents at zero temperature. Besides a coherent Larmor
oscillation, we find an additional collective oscillation at higher
frequencies, emerging as a coherent many-magnon effect at low temperatures.
Using numerical and analytical methods, we analyze the oscillation frequency
and decay time of this coherent current-mode versus temperature and magnetic
field.Comment: 4 pages, 5 figures (and supplemental material: 4 pages, 6 figures
Gender differences in the implementation of cardiovascular prevention measures after an acute coronary event
Objective To compare gender-related lifestyle changes and risk factor management after hospitalisation for a coronary event or revascularisation intervention in Europe.
Method The EUROASPIRE III survey was carried out in 22 European countries in 2006-2007. Consecutive patients having had a coronary event or revascularisation before the age of 80 were identified. A total of 8966 patients (25.3% women) were interviewed and underwent clinical and biochemical tests at least 6 months after hospital admission. Trends in cardiovascular risk management were assessed on the basis of the 1994-1995, 1999-2000 and 2006-2007 EUROASPIRE surveys.
Results Female survey participants were generally older and had a lower educational level than male participants (p<0.0001). The prevalences of obesity (p<0.0001), high blood pressure (BP) (p=0.001), elevated low-density lipoprotein (LDL)-cholesterol (p<0.0001) and diabetes (p<0.0001) were significantly higher in women than in men, whereas current smoking (p<0.0001) was significantly more common in men. The use of antihypertensive and antidiabetic drugs (but not that of other drugs) was more common in women than in men. However, BP (p<0.0001), LDL-cholesterol (p<0.0001) and HbA1c (p<0.0001) targets were less often achieved in women than in men. Between 1994 and 2007, cholesterol control improved less in women than in men (interaction: p=0.009), whereas trends in BP control (p=0.32) and glycaemia (p=0.36) were similar for both genders.
Conclusion The EUROASPIRE III results show that despite similarities in medication exposure, women are less likely than men to achieve BP, LDL-cholesterol and HbA1c targets after a coronary event. This gap did not appear to narrow between 1994 and 2007
Diamond electro-optomechanical resonators integrated in nanophotonic circuits
Diamond integrated photonic devices are promising candidates for emerging
applications in nanophotonics and quantum optics. Here we demonstrate active
modulation of diamond nanophotonic circuits by exploiting mechanical degrees of
freedom in free-standing diamond electro-optomechanical resonators. We obtain
high quality factors up to 9600, allowing us to read out the driven
nanomechanical response with integrated optical interferometers with high
sensitivity. We are able to excite higher order mechanical modes up to 115 MHz
and observe the nanomechanical response also under ambient conditions.Comment: 15 pages, 4 figure
- …
