355 research outputs found
Projectile fragmentation of 129Xe at Elab=790 AMeV
We have measured production yields and longitudinal momentum distributions of
projectile-like fragments in the reaction 129Xe + 27Al at an energy of Elab=790
AMeV. Production cross sections higher than expected from systematics were
observed for nuclei in the neutron-deficient tails of the isotopic
distributions. A comparison with previously measured data from the
fragmentation of 136Xe ions shows that the production yields strongly depend on
the neutron excess of the projectile with respect to the line of
beta-stability. The momentum distributions exhibit a dependence on the fragment
neutron-to-proton ratio in isobaric chains, which was not expected from
systematics so far. This can be interpreted by a higher excitation of the
projectile during the formation of neutron-deficient fragments.Comment: 21 pages, 8 figures, 1 tabl
Parallel momentum distribution of the Si fragments from P
Distribution of the parallel momentum of Si fragments from the breakup
of 30.7 MeV/nucleon P has been measured on C targets. The distribution
has the FWHM with the value of 110.5 23.5 MeV/c which is consistent
quantitatively with Galuber model calculation assuming by a valence proton in
P. The density distribution is also predicted by Skyrme-Hartree-Fock
calculation. Results show that there might exist the proton-skin structure in
P.Comment: 4 pages, 4 figure
Changes in microphytobenthos fluorescence over a tidal cycle: implications for sampling designs
Intertidal microphytobenthos (MPB) are important primary producers and provide food for herbivores in soft sediments and on rocky shores. Methods of measuring MPB biomass that do not depend on the time of collection relative to the time of day or tidal conditions are important in any studies that need to compare temporal or spatial variation, effects of abiotic factors or activity of grazers. Pulse amplitude modulated (PAM) fluorometry is often used to estimate biomass of MPB because it is a rapid, non-destructive method, but it is not known how measures of fluorescence are altered by changing conditions during a period of low tide. We investigated this experimentally using in situ changes in minimal fluorescence (F) on a rocky shore and on an estuarine mudflat around Sydney (Australia), during low tides. On rocky shores, the time when samples are taken during low tide had little direct influence on measures of fluorescence as long as the substratum is dry. Wetness from wave-splash, seepage from rock pools, run-off, rainfall, etc., had large consequences for any comparisons. On soft sediments, fluorescence was decreased if the sediment dried out, as happens during low-spring tides on particularly hot and dry days. Surface water affected the response of PAM and therefore measurements used to estimate MPB, emphasising the need for care to ensure that representative sampling is done during low tide
Diversity of hard-bottom fauna relative to environmental gradients in Kongsfjorden, Svalbard
A baseline study of hard-bottom zoobenthos in relation to environmental gradients in Kongsfjorden, a glacial fjord in Svalbard, is presented, based on collections from 1996 to 1998. The total species richness in 62 samples from 0 to 30 m depth along five transects was 403 species. Because 32 taxa could not be identified to species level and because 11 species are probably new to science, the total number of identified species was 360. Of these, 47 species are new for Svalbard waters. Bryozoa was the most diverse group. Biogeographic composition revealed features of both Arctic and sub-Arctic properties of the fauna. Species richness, frequency of species occurrence, mean abundance and biomass generally decreased towards the tidal glaciers in inner Kongsfjorden. Among eight environmental factors, depth was most important for explaining variance in the composition of the zoobenthos. The diversity was consistently low at shallow depths, whereas the non-linear patterns of species composition of deeper samples indicated a transitional zone between surface and deeper water masses at 15–20 m depth. Groups of “colonial” and “non-colonial” species differed in diversity, biogeographic composition and distribution by location and depth as well as in relation to other environmental factors. “Non-colonial” species made a greater contribution than “colonial” species to total species richness, total occurrence and biomass in samples, and were more influenced by the depth gradient. Biogeographic composition was sensitive to variation of zoobenthic characteristics over the studied depth range. A list of recorded species and a description of sampling sites are presented
Effects of solar radiation on growth, photosynthesis and respiration of marine macroalgae from the Arctic
Chief digital officers:An analysis of the presence of a centralized digital transformation role
By appointing a chief digital officer (CDO), firms decide for a central role responsible for their digital transformation. While CDOs have recently appeared in the C-suites of firms across the globe, the current literature lacks insights into the specific antecedents of CDO presence. Grounded in the peculiarities of the digital age, we provide theoretical arguments explaining how the decision to centralize digital transformation responsibilities might be related to transformation urgency and coordination needs. Empirical analyses based on a panel data set of 913 U.S. and European firms support that transformation urgency and coordination needs predict CDO presence. An additional analysis of moderating temporal effects reveals that, over time, the effect of transformation urgency is weakened and the effect of coordination needs on CDO presence is strengthened. We discuss implications for research and practice regarding the antecedents of CDO presence, TMT research more generally, and centralization in the digital age
Photoacclimation in a tropical population of Cladophora glomerata (L.) Kützing 1843 (Chlorophyta) from southeastern Brazil
Light in the Polar Night
How much light isa vailable for biological processes during Polar Night? This question appears simple enough. But the reality is that conventional light sen- sors for measuring visible light (~350 to ~700 nm) have not been sensitive enough to answer it. Beyond this technical challenge, “light” is a general term that must be qualified in terms of “light climate” before it has meaning for biological systems. In this chapter, we provide an answer to the question posed above and explore aspects of light climate during Polar Night with relevance to biology, specifically, how Polar Night is defined by solar elevation, atmospheric light in Polar Night and its propaga- tion underwater, bioluminescence in Polar Night and the concept of Polar Night as a deep-sea analogue, light pollution, and future perspectives. This chapter focuses on the quantity and quality of light present during Polar Night, while subsequent chapters in this volume focus on specific biological effects of this light for algae (Chap. “Marine Micro- and Macroalgae in the Polar Night”), zooplankton (Chaps.“Zooplankton in the Polar Night” and “Biological Clocks and Rhythms in Polar Organisms”), and fish (Chap. “Fish Ecology in the Polar Night”)
- …
