72 research outputs found

    Measurement artefacts lead to false positives in the study of birdsong in noise

    Get PDF
    Numerous studies over the past decade have reported correlations between elevated levels of anthropogenic noise and a rise in the minimum frequency of acoustic signals of animals living in noisy habitats. This pattern appears to be occurring globally, and higher pitched signals have been hypothesized to be adaptive changes that reduce masking by low‐frequency traffic noise. However, the sound analysis methods most often used in these studies are prone to measurement errors that can result in false positives. In addition, the commonly used method of measuring frequencies visually from spectrograms might also lead to observer‐expectancy biases that could exacerbate measurement errors. We conducted an experiment to (i) quantify the size and type of errors that result from ‘eye‐balling’ frequency measurements with cursors placed manually on spectrograms of signals recorded in noise and no‐noise conditions, and (ii) to test whether observer expectations lead to significant errors in frequency measurements. We asked 54 volunteers, blind to the true intention of our study, to visually measure the minimum frequency of a variety of natural and synthesized bird sounds, recorded either in noise, or no‐noise conditions. Test subjects were either informed or uninformed about the hypothesized results of the measurements. Our results demonstrate that inappropriate methodology in acoustic analysis can yield false positives with effect sizes as large, or even larger, than those reported in published studies. In addition to these measurement artefacts, psychological observer biases also led to false positives – when observers expected signals to have higher minimum frequencies in noise, they measured significantly higher minimum frequencies than uninformed observers, who had not been primed with any expectation. The use of improper analysis methods in bioacoustics can lead to the publication of spurious results. We discuss alternative methods that yield unbiased frequency measures and we caution that it is imperative for researchers to familiarize themselves both with the functions and limitations of their sound analysis programmes. In addition, observer‐expectancy biases are a potential source of error not only in the field of bioacoustics, but in any situation where measurements can be influenced by human subjectivity

    On the Size and Flight Diversity of Giant Pterosaurs, the Use of Birds as Pterosaur Analogues and Comments on Pterosaur Flightlessness

    Get PDF
    The size and flight mechanics of giant pterosaurs have received considerable research interest for the last century but are confused by conflicting interpretations of pterosaur biology and flight capabilities. Avian biomechanical parameters have often been applied to pterosaurs in such research but, due to considerable differences in avian and pterosaur anatomy, have lead to systematic errors interpreting pterosaur flight mechanics. Such assumptions have lead to assertions that giant pterosaurs were extremely lightweight to facilitate flight or, if more realistic masses are assumed, were flightless. Reappraisal of the proportions, scaling and morphology of giant pterosaur fossils suggests that bird and pterosaur wing structure, gross anatomy and launch kinematics are too different to be considered mechanically interchangeable. Conclusions assuming such interchangeability—including those indicating that giant pterosaurs were flightless—are found to be based on inaccurate and poorly supported assumptions of structural scaling and launch kinematics. Pterosaur bone strength and flap-gliding performance demonstrate that giant pterosaur anatomy was capable of generating sufficient lift and thrust for powered flight as well as resisting flight loading stresses. The retention of flight characteristics across giant pterosaur skeletons and their considerable robustness compared to similarly-massed terrestrial animals suggest that giant pterosaurs were not flightless. Moreover, the term ‘giant pterosaur’ includes at least two radically different forms with very distinct palaeoecological signatures and, accordingly, all but the most basic sweeping conclusions about giant pterosaur flight should be treated with caution. Reappraisal of giant pterosaur material also reveals that the size of the largest pterosaurs, previously suggested to have wingspans up to 13 m and masses up to 544 kg, have been overestimated. Scaling of fragmentary giant pterosaur remains have been misled by distorted fossils or used inappropriate scaling techniques, indicating that 10–11 m wingspans and masses of 200–250 kg are the most reliable upper estimates of known pterosaur size

    Gastrocknung

    No full text

    Bioinspired Melanin‐Based Optically Active Materials

    No full text
    Melanin is a widespread multifunctional biological pigment that has emerged as a promising platform for applications in coating, catalysis, energy, drug delivery, and medical therapy. Melanin is also a compelling material for photonic applications because of its favorable material characteristics, including broadband absorption, high refractive index, tunable fluorescence, and UV blocking capabilities. However, there is not yet a critical review focusing on optical functions of melanin. This review summarizes current advances in bioinspired melanin-based optically active materials, covering melanin's inherent optical properties and functions both in nature and in optics-related applications. It is envisioned that this work will provide a better understanding of melanin's photonic functions and insights into the future development of melanin-based or melanin-inspired optically active materials for wide applications
    corecore