118 research outputs found

    Should the Health Community Promote Smokeless Tobacco (Snus) as a Harm Reduction Measure?

    Get PDF
    Background to the debate: The tobacco control community is divided on whether or not to inform the public that using oral, smokeless tobacco (Swedish snus) is less hazardous to health than smoking tobacco. Proponents of “harm reduction” point to the Swedish experience. Snus seems to be widely used as an alternative to cigarettes in Sweden, say these proponents, contributing to the low overall prevalence of smoking and smoking-related disease. Harm reduction proponents thus argue that the health community should actively inform inveterate cigarette smokers of the benefits of switching to snus. However, critics of harm reduction say that snus has its own risks, that no form of tobacco should ever be promoted, and that Sweden's experience is likely to be specific to that culture and not transferable to other settings. Critics also remain deeply suspicious that the tobacco industry will use snus marketing as a “gateway” to promote cigarettes. In the interests of promoting debate, the authors (who are collaborators on a research project on the future of tobacco control) have agreed to outline the strongest arguments for and against promoting Swedish snus as a form of harm reduction

    Binding of protegrin-1 to Pseudomonas aeruginosa and Burkholderia cepacia

    Get PDF
    BACKGROUND: Pseudomonas aeruginosa and Burkholderia cepacia infections of cystic fibrosis patients' lungs are often resistant to conventional antibiotic therapy. Protegrins are antimicrobial peptides with potent activity against many bacteria, including P. aeruginosa. The present study evaluates the correlation between protegrin-1 (PG-1) sensitivity/resistance and protegrin binding in P. aeruginosa and B. cepacia. METHODS: The PG-1 sensitivity/resistance and PG-1 binding properties of P. aeruginosa and B. cepacia were assessed using radial diffusion assays, radioiodinated PG-1, and surface plasmon resonance (BiaCore). RESULTS: The six P. aeruginosa strains examined were very sensitive to PG-1, exhibiting minimal active concentrations from 0.0625–0.5 ÎŒg/ml in radial diffusion assays. In contrast, all five B. cepacia strains examined were greater than 10-fold to 100-fold more resistant, with minimal active concentrations ranging from 6–10 ÎŒg/ml. When incubated with a radioiodinated variant of PG-1, a sensitive P. aeruginosa strain bound considerably more protegrin molecules per cell than a resistant B. cepacia strain. Binding/diffusion and surface plasmon resonance assays revealed that isolated lipopolysaccharide (LPS) and lipid A from the sensitive P. aeruginosa strains bound PG-1 more effectively than LPS and lipid A from resistant B. cepacia strains. CONCLUSION: These findings support the hypothesis that the relative resistance of B. cepacia to protegrin is due to a reduced number of PG-1 binding sites on the lipid A moiety of its LPS

    Local flexibility in feeding behaviour and contrasting microhabitat use of an omnivore across latitudes

    Get PDF
    As the environment is getting warmer and species are redistributed, consumers can be forced to adjust their interactions with available prey, and this could have cascading effects within food webs. To better understand the capacity for foraging flexibility, our study aimed to determine the diet variability of an ectotherm omnivore inhabiting kelp forests, the sea urchin Echinus esculentus, along its entire latitudinal distribution in the northeast Atlantic. Using a combination of gut content and stable isotope analyses, we determined the diet and trophic position of sea urchins at sites in Portugal (42° N), France (49° N), southern Norway (63° N), and northern Norway (70° N), and related these results to the local abundance and distribution of putative food items. With mean estimated trophic levels ranging from 2.4 to 4.6, omnivory and diet varied substantially within and between sites but not across latitudes. Diet composition generally reflected prey availability within epiphyte or understorey assemblages, with local affinities demonstrating that the sea urchin adjusts its foraging to match the small-scale distribution of food items. A net “preference” for epiphytic food sources was found in northern Norway, where understorey food was limited compared to other regions. We conclude that diet change may occur in response to food source redistribution at multiple spatial scales (microhabitats, sites, regions). Across these scales, the way that key consumers alter their foraging in response to food availability can have important implication for food web dynamics and ecosystem functions along current and future environmental gradients

    Meta-analysis of the relation between European and American smokeless tobacco and oral cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Smokeless tobacco is often referred to as a major contributor to oral cancer. In some regions, especially Southeast Asia, the risk is difficult to quantify due to the variety of products, compositions (including non-tobacco ingredients) and usage practices involved. In Western populations, the evidence of an increased risk in smokeless tobacco users seems unclear, previous reviews having reached somewhat differing conclusions. We report a detailed quantitative review of the evidence in American and European smokeless tobacco users, and compare our findings with previous reviews and meta-analyses.</p> <p>Methods</p> <p>Following literature review a meta-analysis was conducted of 32 epidemiological studies published between 1920 and 2005 including tests for homogeneity and publication bias.</p> <p>Results</p> <p>Based on 38 heterogeneous study-specific estimates of the odds ratio or relative risk for smokeless tobacco use, the random-effects estimate was 1.87 (95% confidence interval 1.40–2.48). The increase was mainly evident in studies conducted before 1980. No increase was seen in studies in Scandinavia. Restricting attention to the seven estimates adjusted for smoking and alcohol eliminated both heterogeneity and excess risk (1.02; 0.82–1.28). Estimates also varied by sex (higher in females) and by study design (higher in case-control studies with hospital controls) but more clearly in studies where estimates were unadjusted, even for age. The pattern of estimates suggests some publication bias. Based on limited data specific to never smokers, the random-effects estimate was 1.94 (0.88–4.28), the eight individual estimates being heterogeneous and based on few exposed cases.</p> <p>Conclusion</p> <p>Smokeless tobacco, as used in America or Europe, carries at most a minor increased risk of oral cancer. However, elevated risks in specific populations or from specific products cannot definitely be excluded.</p

    HIV-1 Env associates with HLA-C free-chains at the cell membrane modulating viral infectivity

    Get PDF
    HLA-C has been demonstrated to associate with HIV-1 envelope glycoprotein (Env). Virions lacking HLA-C have reduced infectivity and increased susceptibility to neutralizing antibodies. Like all others MHC-I molecules, HLA-C requires \u3b22-microglobulin (\u3b22m) for appropriate folding and expression on the cell membrane but this association is weaker, thus generating HLA-C free-chains on the cell surface. In this study, we deepen the understanding of HLA-C and Env association by showing that HIV-1 specifically increases the amount of HLA-C free chains, not bound to \u3b22m, on the membrane of infected cells. The association between Env and HLA-C takes place at the cell membrane requiring \u3b22m to occur. We report that the enhanced infectivity conferred to HIV-1 by HLA-C specifically involves HLA-C free chain molecules that have been correctly assembled with \u3b22m. HIV-1 Env-pseudotyped viruses produced in the absence of \u3b22m are less infectious than those produced in the presence of \u3b22m. We hypothesize that the conformation and surface expression of HLA-C molecules could be a discriminant for the association with Env. Binding stability to \u3b22m may confer to HLA-C the ability to preferentially act either as a conventional immune-competent molecule or as an accessory molecule involved in HIV-1 infectivity

    Environmental degradation amplifies species’ responses to temperature variation in a trophic interaction

    Get PDF
    1. Land‐use and climate change are two of the primary drivers of the current biodiversity crisis. However, we lack understanding of how single‐species and multi‐species associations are affected by interactions between multiple environmental stressors. 2. We address this gap by examining how environmental degradation interacts with daily stochastic temperature variation to affect individual life history and population dynamics in a host‐parasitoid trophic interaction, using the Indian meal moth, Plodia interpunctella, and its parasitoid wasp Venturia canescens. 3. We carried out a single generation individual life history experiment and a multi‐generation microcosm experiment during which individuals and microcosms were maintained at a mean temperature of 26 °C that was either kept constant or varied stochastically, at four levels of host resource degradation, in the presence or absence of parasitoids. 4. At the individual level, resource degradation increased juvenile development time and decreased adult body size in both species. Parasitoids were more sensitive to temperature variation than their hosts, with a shorter juvenile stage duration than in constant temperatures and a longer adult lifespan in moderately degraded environments. Resource degradation also altered the host's response to temperature variation, leading to a longer juvenile development time at high resource degradation. At the population level, moderate resource degradation amplified the effects of temperature variation on host and parasitoid populations compared to no or high resource degradation and parasitoid overall abundance was lower in fluctuating temperatures. Top‐down regulation by the parasitoid and bottom‐up regulation driven by resource degradation contributed to more than 50% of host and parasitoid population responses to temperature variation. 5. Our results demonstrate that environmental degradation can strongly affect how species in a trophic interaction respond to short‐term temperature fluctuations through direct and indirect trait‐mediated effects. The effects are driven by species differences in sensitivity to environmental conditions and modulate top‐down (parasitism) and bottom‐up (resource) regulation. This study highlights the need to account for differences in the sensitivity of species' traits to environmental stressors to understand how interacting species will respond to simultaneous anthropogenic changes
    • 

    corecore