123 research outputs found

    Immunoevolution of mouse pancreatic organoid isografts from preinvasive to metastatic disease

    Get PDF
    Pancreatic ductal adenocarcinoma (PDA) has a highly immunosuppressive microenvironment, which is contributed by the complex interaction between cancer cells and a heterogeneous population of stromal cells. Therefore, facile and trackable models are needed for integrative and dynamic interrogation of cancer-stroma interaction. Here, we tracked the immunoevolution of PDA in a genetically-defined transplantable model of mouse pancreatic tumour organoids that recapitulates the progression of the disease from early preinvasive lesions to metastatic carcinomas. We demonstrated that organoid-derived isografts (ODI) can be used as a biological source of biomarkers (NT5E, TGFB1, FN1, and ITGA5) of aggressive molecular subtypes of human PDA. In ODI, infiltration from leukocytes is an early event during progression of the disease as observed for autochthonous models. Neoplastic progression was associated to accumulation of Maf+ macrophages, which inversely correlated with CD8+ T cells infiltration. Consistently, levels of MAF were enriched in human PDA subtypes characterized by abundance of macrophage-related transcripts and indicated poor patients' survival. Density of MAF+ macrophages was higher in human PDA tissues compared to preinvasive lesions. Our results suggest that ODIs represent a suitable system for genotypic-immunophenotypic studies and support the hypothesis of MAF+ macrophages as a prominent immunosuppressive population in PDA

    Diabetes Worsens Skeletal Muscle Mitochondrial Function, Oxidative Stress, and Apoptosis After Lower-Limb Ischemia-Reperfusion: Implication of the RISK and SAFE Pathways?

    Get PDF
    Objectives: Diabetic patients respond poorly to revascularization for peripheral arterial disease (PAD) but the underlying mechanisms are not well understood. We aimed to determine whether diabetes worsens ischemia-reperfusion (IR)-induced muscle dysfunction and the involvement of endogenous protective kinases in this process. Materials and Methods: Streptozotocin-induced diabetic and non-diabetic rats were randomized to control or to IR injury (3 h of aortic cross-clamping and 2 h of reperfusion). Mitochondrial respiration, reactive oxygen species (ROS) production, protein levels of superoxide dismutase (SOD2) and endogenous protective kinases (RISK and SAFE pathways) were investigated in rat gastrocnemius, together with upstream (GSK-3β) and downstream (cleaved caspase-3) effectors of apoptosis. Results: Although already impaired when compared to non-diabetic controls at baseline, the decline in mitochondrial respiration after IR was more severe in diabetic rats. In diabetic animals, IR-triggered oxidative stress (increased ROS production and reduced SOD2 levels) and effectors of apoptosis (reduced GSK-3β inactivation and higher cleaved caspase-3 levels) were increased to a higher level than in the non-diabetics. IR had no effect on the RISK pathway in non-diabetics and diabetic rats, but increased STAT 3 only in the latter. Conclusion: Type 1 diabetes worsens IR-induced skeletal muscle injury, endogenous protective pathways not being efficiently stimulated

    Mechanism-based pharmacokinetic-pharmacodynamic modeling of the dopamine D-2 receptor occupancy of olanzapine in rats

    Get PDF
    A mechanism-based PK-PD model was developed to predict the time course of dopamine D-2 receptor occupancy (D2RO) in rat striatum following administration of olanzapine, an atypical antipsychotic drug. A population approach was utilized to quantify both the pharmacokinetics and pharmacodynamics of olanzapine in rats using the exposure (plasma and brain concentration) and D2RO profile obtained experimentally at various doses (0.01-40 mg/kg) administered by different routes. A two-compartment pharmacokinetic model was used to describe the plasma pharmacokinetic profile. A hybrid physiology- and mechanism-based model was developed to characterize the D-2 receptor binding in the striatum and was fitted sequentially to the data. The parameters were estimated using nonlinear mixed-effects modeling . Plasma, brain concentration profiles and time course of D2RO were well described by the model; validity of the proposed model is supported by good agreement between estimated association and dissociation rate constants and in vitro values from literature. This model includes both receptor binding kinetics and pharmacokinetics as the basis for the prediction of the D2RO in rats. Moreover, this modeling framework can be applied to scale the in vitro and preclinical information to clinical receptor occupancy

    Sprouted Innervation into Uterine Transplants Contributes to the Development of Hyperalgesia in a Rat Model of Endometriosis

    Get PDF
    Endometriosis is an enigmatic painful disorder whose pain symptoms remain difficult to alleviate in large part because the disorder is defined by extrauteral endometrial growths whose contribution to pain is poorly understood. A rat model (ENDO) involves autotransplanting on abdominal arteries uterine segments that grow into vascularized cysts that become innervated with sensory and sympathetic fibers. ENDO rats exhibit vaginal hyperalgesia. We used behavioral, physiological, and immunohistochemical methods to test the hypothesis that cyst innervation contributes to the development of this hyperalgesia after transplant. Rudimentary sensory and sympathetic innervation appeared in the cysts at two weeks, sprouted further and more densely into the cyst wall by four weeks, and matured by six weeks post-transplant. Sensory fibers became abnormally functionally active between two and three weeks post-transplant, remaining active thereafter. Vaginal hyperalgesia became significant between four and five weeks post-transplant, and stabilized after six to eight weeks. Removing cysts before they acquired functional innervation prevented vaginal hyperalgesia from developing, whereas sham cyst removal did not. Thus, abnormally-active innervation of ectopic growths occurs before hyperalgesia develops, supporting the hypothesis. These findings suggest that painful endometriosis can be classified as a mixed inflammatory/neuropathic pain condition, which opens new avenues for pain relief. The findings also have implications beyond endometriosis by suggesting that functionality of any transplanted tissue can be influenced by the innervation it acquires

    Pharmacokinetic-Pharmacodynamic Modeling of the D2 and 5-HT2A Receptor Occupancy of Risperidone and Paliperidone in Rats

    Get PDF
    A pharmacokinetic-pharmacodynamic (PK-PD) model was developed to describe the time course of brain concentration and dopamine D-2 and serotonin 5-HT2A receptor occupancy (RO) of the atypical antipsychotic drugs risperidone and paliperidone in rats. A population approach was utilized to describe the PK-PD of risperidone and paliperidone using plasma and brain concentrations and D-2 and 5-HT2A RO data. A previously published physiology- and mechanism-based (PBPKPD) model describing brain concentrations and D-2 receptor binding in the striatum was expanded to include metabolite kinetics, active efflux from brain, and binding to 5-HT2A receptors in the frontal cortex. A two-compartment model best fit to the plasma PK profile of risperidone and paliperidone. The expanded PBPKPD model described brain concentrations and D-2 and 5-HT2A RO well. Inclusion of binding to 5-HT2A receptors was necessary to describe observed brain-to-plasma ratios accurately. Simulations showed that receptor affinity strongly influences brain-to-plasma ratio pattern. Binding to both D-2 and 5-HT2A receptors influences brain distribution of risperidone and paliperidone. This may stem from their high affinity for D-2 and 5-HT2A receptors. Receptor affinities and brain-to-plasma ratios may need to be considered before choosing the best PK-PD model for centrally active drugs

    Comparative analysis of the human hepatic and adipose tissue transcriptomes during LPS-induced inflammation leads to the identification of differential biological pathways and candidate biomarkers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insulin resistance (IR) is accompanied by chronic low grade systemic inflammation, obesity, and deregulation of total body energy homeostasis. We induced inflammation in adipose and liver tissues <it>in vitro </it>in order to mimic inflammation <it>in vivo </it>with the aim to identify tissue-specific processes implicated in IR and to find biomarkers indicative for tissue-specific IR.</p> <p>Methods</p> <p>Human adipose and liver tissues were cultured in the absence or presence of LPS and DNA Microarray Technology was applied for their transcriptome analysis. Gene Ontology (GO), gene functional analysis, and prediction of genes encoding for secretome were performed using publicly available bioinformatics tools (DAVID, STRING, SecretomeP). The transcriptome data were validated by proteomics analysis of the inflamed adipose tissue secretome.</p> <p>Results</p> <p>LPS treatment significantly affected 667 and 483 genes in adipose and liver tissues respectively. The GO analysis revealed that during inflammation adipose tissue, compared to liver tissue, had more significantly upregulated genes, GO terms, and functional clusters related to inflammation and angiogenesis. The secretome prediction led to identification of 399 and 236 genes in adipose and liver tissue respectively. The secretomes of both tissues shared 66 genes and the remaining genes were the differential candidate biomarkers indicative for inflamed adipose or liver tissue. The transcriptome data of the inflamed adipose tissue secretome showed excellent correlation with the proteomics data.</p> <p>Conclusions</p> <p>The higher number of altered proinflammatory genes, GO processes, and genes encoding for secretome during inflammation in adipose tissue compared to liver tissue, suggests that adipose tissue is the major organ contributing to the development of systemic inflammation observed in IR. The identified tissue-specific functional clusters and biomarkers might be used in a strategy for the development of tissue-targeted treatment of insulin resistance in patients.</p

    Tremor in multiple sclerosis

    Get PDF
    Tremor is estimated to occur in about 25 to 60 percent of patients with multiple sclerosis (MS). This symptom, which can be severely disabling and embarrassing for patients, is difficult to manage. Isoniazid in high doses, carbamazepine, propranolol and gluthetimide have been reported to provide some relief, but published evidence of effectiveness is very limited. Most trials were of small size and of short duration. Cannabinoids appear ineffective. Tremor reduction can be obtained with stereotactic thalamotomy or thalamic stimulation. However, the studies were small and information on long-term functional outcome is scarce. Physiotherapy, tremor reducing orthoses, and limb cooling can achieve some functional improvement. Tremor in MS remains a significant challenge and unmet need, requiring further basic and clinical research

    Influence of antisynthetase antibodies specificities on antisynthetase syndrome clinical spectrum time course

    Get PDF
    Antisynthetase syndrome (ASSD) is a rare clinical condition that is characterized by the occurrence of a classic clinical triad, encompassing myositis, arthritis, and interstitial lung disease (ILD), along with specific autoantibodies that are addressed to different aminoacyl tRNA synthetases (ARS). Until now, it has been unknown whether the presence of a different ARS might affect the clinical presentation, evolution, and outcome of ASSD. In this study, we retrospectively recorded the time of onset, characteristics, clustering of triad findings, and survival of 828 ASSD patients (593 anti-Jo1, 95 anti-PL7, 84 anti-PL12, 38 anti-EJ, and 18 anti-OJ), referring to AENEAS (American and European NEtwork of Antisynthetase Syndrome) collaborative group's cohort. Comparisons were performed first between all ARS cases and then, in the case of significance, while using anti-Jo1 positive patients as the reference group. The characteristics of triad findings were similar and the onset mainly began with a single triad finding in all groups despite some differences in overall prevalence. The "ex-novo" occurrence of triad findings was only reduced in the anti-PL12-positive cohort, however, it occurred in a clinically relevant percentage of patients (30%). Moreover, survival was not influenced by the underlying anti-aminoacyl tRNA synthetase antibodies' positivity, which confirmed that antisynthetase syndrome is a heterogeneous condition and that antibody specificity only partially influences the clinical presentation and evolution of this condition

    HIV-1 matrix protein p17 misfolding forms toxic amyloidogenic assemblies that induce neurocognitive disorders

    Get PDF
    © 2017 The Author(s). Human immunodeficiency virus type-1 (HIV-1)-Associated neurocognitive disorder (HAND) remains an important neurological manifestation that adversely affects a patient's quality of life. HIV-1 matrix protein p17 (p17) has been detected in autoptic brain tissue of HAND individuals who presented early with severe AIDS encephalopathy. We hypothesised that the ability of p17 to misfold may result in the generation of toxic assemblies in the brain and may be relevant for HAND pathogenesis. A multidisciplinary integrated approach has been applied to determine the ability of p17 to form soluble amyloidogenic assemblies in vitro. To provide new information into the potential pathogenic role of soluble p17 species in HAND, their toxicological capability was evaluated in vivo. In C. elegans, capable of recognising toxic assemblies of amyloidogenic proteins, p17 induces a specific toxic effect which can be counteracted by tetracyclines, drugs able to hinder the formation of large oligomers and consequently amyloid fibrils. The intrahippocampal injection of p17 in mice reduces their cognitive function and induces behavioral deficiencies. These findings offer a new way of thinking about the possible cause of neurodegeneration in HIV-1-seropositive patients, which engages the ability of p17 to form soluble toxic assemblies
    corecore