501 research outputs found

    A Boreing Night of Observations of the Upper Mesosphere and Lower Thermosphere Over the Andes Lidar Observatory

    Get PDF
    A very high-spatial resolution (∼21-23 m pixel at 85 km altitude) OH airglow imager at the Andes Lidar Observatory at Cerro Pach´on, Chile observed considerable ducted wave activity on the night of October 29-30, 2016. This instrument was collocated with a Na wind-temperature lidar that provided data revealing the occurrence of strong ducts. A large field of view OH and greenline airglow imager showed waves present over a vertical extent consistent with the altitudes of the ducting features identified in the lidar profiles. While waves that appeared to be ducted were seen in all imagers throughout the observation interval, the wave train seen in the OH images at earlier times had a distinct leading non-sinusoidal phase followed by several, lower-amplitude, more sinusoidal phases, suggesting a likely bore. The leading phase exhibited significant dissipation via small-scale secondary instabilities suggesting vortex rings that progressed rapidly to smaller scales and turbulence (the latter not fully resolved) thereafter. The motions of these small-scale features were consistent with their location in the duct at or below ∼83-84 km. Bore dissipation caused a momentum flux divergence and a local acceleration of the mean flow within the duct along the direction of the initial bore propagation. A number of these features are consistent with mesospheric bores observed or modeled in previous studies

    Kelvin-Helmholtz Billow Interactions and Instabilities In The Mesosphere Over the Andes Lidar Observatory: 1. Observations

    Get PDF
    A very high spatial resolution (∼25 m pixel at 90 km altitude) OH airglow imager was installed at the Andes Lidar Observatory on Cerro Pachón, Chile, in February 2016. This instrument was collocated with a Na wind-temperature lidar. On 1 March 2016, the lidar data showed that the atmosphere was dynamically unstable before 0100 UT and thus conducive to the formation of Kelvin-Helmholtz instabilities (KHIs). The imager revealed the presence of a KHI and an apparent atmospheric gravity wave (AGW) propagating approximately perpendicular to the plane of primary KHI motions. The AGW appears to have induced modulations of the shear layer leading to misalignments of the emerging KHI billows. These enabled strong KHI billow interactions, as they achieved large amplitudes and a rapid transition to turbulence thereafter. The interactions manifested themselves as vortex tube and knot features that were earlier identified in laboratory studies, as discussed in Thorpe (1987, https://doi.org/10.1029/ JC092iC05p05231; 2002, https://doi.org/10.1002/qj.200212858307) and inferred to be widespread in the atmosphere based on features seen in tropospheric clouds but which have never been identified in previous upper atmospheric observations. This study presents the first high-resolution airglow imaging observation of these KHI interaction dynamics that drive rapid transitions to turbulence and suggest the potential importance of these dynamics in the mesosphere and at other altitudes. A companion paper (Fritts et al., 2020, https://doi.org/10.1029/2020JD033412) modeling these dynamics confirms that the vortex tubes and knots yield more rapid and significantly enhanced turbulence relative to the internal instabilities of individual KHI billows

    Ultrafast Pump-Push Photocurrent Spectroscopy of Organic Photoconversion Systems

    Get PDF
    Novel optical pump-push – photocurrent probe ultrafast spectroscopy experiments on organic photoconversion systems show that excessive excitation energy in such systems is not lost but used to reach delocalised states that act as the gateway for long-range charge separation. We also show that the developed experimental approach can be generalised to inorganic and hybrid photoconversion systems

    The Life Cycle of Instability Features Measured from the Andes Lidar Observatory Over Cerro Pachon on 24 March 2012

    Get PDF
    The Aerospace Corporation\u27s Nightglow Imager (ANI) observes nighttime OH emission (near 1.6 µm) every 2 s over an approximate 73¬∞ field of view. ANI had previously been used to study instability features seen over Maui. Here we describe observations of instabilities seen from 5 to 8 UT on 24 March 2012 over Cerro Pachon, Chile, and compare them with previous results from Maui, with theory, and with Direct Numerical Simulations (DNS). The atmosphere had reduced stability because of the large negative temperature gradients measured by a Na lidar. Thus, regions of dynamical and convective instabilities are expected to form, depending on the value of the Richardson number. Bright primary instabilities are formed with a horizontal wavelength near 9 km and showed the subsequent formation of secondary instabilities, rarely seen over Maui, consistent with the primaries being dynamical instabilities. The ratio of the primary to secondary horizontal wavelength was greater over Chile than over Maui. After dissipation of the instabilities, smaller-scale features appeared with sizes in the buoyancy subrange between 1.5 and 6 km. Their size spectra were consistent with the model of Weinstock (1978) if the turbulence is considered to be increasing. The DNS results produce secondary instabilities with sizes comparable to what is seen in the images although their spectra are somewhat steeper than is observed. However, the DNS results also show that after the complete decay of the primary features, scale sizes considerably smaller than 1 km are produced and these cannot be seen by the ANI instrument

    Elucidating mechanisms of genetic cross-disease associations at the PROCR vascular disease locus

    Get PDF
    Many individual genetic risk loci have been associated with multiple common human diseases. However, the molecular basis of this pleiotropy often remains unclear. We present an integrative approach to reveal the molecular mechanism underlying the PROCR locus, associated with lower coronary artery disease (CAD) risk but higher venous thromboembolism (VTE) risk. We identify PROCR-p.Ser219Gly as the likely causal variant at the locus and protein C as a causal factor. Using genetic analyses, human recall-by-genotype and in vitro experimentation, we demonstrate that PROCR-219Gly increases plasma levels of (activated) protein C through endothelial protein C receptor (EPCR) ectodomain shedding in endothelial cells, attenuating leukocyte– endothelial cell adhesion and vascular inflammation. We also associate PROCR-219Gly with an increased pro- thrombotic state via coagulation factor VII, a ligand of EPCR. Our study, which links PROCR-219Gly to CAD through anti-inflammatory mechanisms and to VTE through pro-thrombotic mechanisms, provides a framework to reveal the mechanisms underlying similar cross-phenotype associations
    • …
    corecore